IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v27y2012i5p812-830.html

Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models

Author

Listed:
  • Markku Lanne
  • Arto Luoma
  • Jani Luoto

Abstract

In this paper, we propose a Bayesian estimation and prediction procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, which gives posterior predictive densities as a byproduct. We show that the posterior model probability provides a convenient model selection criterion and yields information on the probabilities of the alternative causal and noncausal specifications. This is particularly useful in assessing economic theories that imply either causal or purely noncausal dynamics. As an empirical application, we consider U.S. inflation dynamics. A purely noncausal AR model gets the strongest support, but there is also substantial evidence in favor of other noncausal AR models allowing for dependence on past inflation. Thus, although U.S. inflation dynamics seem to be dominated by expectations, the backward-looking component is not completely missing. Finally, the noncausal specifications seem to yield inflation forecasts which are superior to those from alternative models especially at longer forecast horizons.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Markku Lanne & Arto Luoma & Jani Luoto, 2012. "Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
  • Handle: RePEc:wly:japmet:v:27:y:2012:i:5:p:812-830
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
    2. Henri Nyberg & Markku Lanne & Erkka Saarinen, 2012. "Does noncausality help in forecasting economic time series?," Economics Bulletin, AccessEcon, vol. 32(4), pages 2849-2859.
    3. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    4. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    5. Chan, Joshua C.C. & Grant, Angelia L., 2015. "Pitfalls of estimating the marginal likelihood using the modified harmonic mean," Economics Letters, Elsevier, vol. 131(C), pages 29-33.
    6. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    7. Lof Matthijs, 2013. "Noncausality and asset pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 211-220, April.
    8. Lanne, Markku & Luoto, Jani, 2012. "Has US inflation really become harder to forecast?," Economics Letters, Elsevier, vol. 115(3), pages 383-386.
    9. Frédérique Bec & Alain Guay & Heino Bohn Nielsen & Sarra Saïdi, 2022. "Power of unit root tests against nonlinear and noncausal alternatives," Thema Working Papers 2022-14, THEMA (Théorie Economique, Modélisation et Applications), CY Cergy-Paris University, ESSEC and CNRS.
    10. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    11. Lanne Markku, 2015. "Noncausality and inflation persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
    12. Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.
    13. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    14. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    15. Markku Lanne & Jani Luoto, 2016. "Noncausal Bayesian Vector Autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1392-1406, November.
    16. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    17. Lof, Matthijs, 2013. "Essays on Expectations and the Econometrics of Asset Pricing," MPRA Paper 59064, University Library of Munich, Germany.
    18. Gianluca Cubadda & Francesco Giancaterini & Stefano Grassi, 2025. "Sequential Monte Carlo for Noncausal Processes," Papers 2501.03945, arXiv.org.
    19. Nyberg, Henri & Saikkonen, Pentti, 2014. "Forecasting with a noncausal VAR model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 536-555.
    20. Lanne, Markku & Nyberg, Henri & Saarinen, Erkka, 2011. "Forecasting U.S. Macroeconomic and Financial Time Series with Noncausal and Causal AR Models: A Comparison," MPRA Paper 30254, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:27:y:2012:i:5:p:812-830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.