IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models

  • Markku Lanne
  • Arto Luoma
  • Jani Luoto

In this paper, we propose a Bayesian estimation and prediction procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, which gives posterior predictive densities as a byproduct. We show that the posterior model probability provides a convenient model selection criterion and yields information on the probabilities of the alternative causal and noncausal specifications. This is particularly useful in assessing economic theories that imply either causal or purely noncausal dynamics. As an empirical application, we consider U.S. inflation dynamics. A purely noncausal AR model gets the strongest support, but there is also substantial evidence in favor of other noncausal AR models allowing for dependence on past inflation. Thus, although U.S. inflation dynamics seem to be dominated by expectations, the backward-looking component is not completely missing. Finally, the noncausal specifications seem to yield inflation forecasts which are superior to those from alternative models especially at longer forecast horizons.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Applied Econometrics.

Volume (Year): 27 (2012)
Issue (Month): 5 (08)
Pages: 812-830

as
in new window

Handle: RePEc:wly:japmet:v:27:y:2012:i:5:p:812-830
Contact details of provider: Web page: http://www.interscience.wiley.com/jpages/0883-7252/

Order Information: Web: http://www3.interscience.wiley.com/jcatalog/subscribe.jsp?issn=0883-7252 Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S19-40, Suppl. De.
  2. Smets, Frank & Wouters, Rafael, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," CEPR Discussion Papers 6112, C.E.P.R. Discussion Papers.
  3. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139, March.
  4. Jordi Galí & Mark Gertler, 1998. "Inflation dynamics: A structural econometric analysis," Economics Working Papers 341, Department of Economics and Business, Universitat Pompeu Fabra.
  5. Andrew Atkeson & Lee E. Ohanian., 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
  6. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
  7. Markku Lanne & Pentti Saikkonen, 2008. "Modeling Expectations with Noncausal Autoregressions," Economics Working Papers ECO2008/20, European University Institute.
  8. Jordi Galí & Mark Gertler & David López-Salido, 2005. "Robustness of the Estimates of the Hybrid New Keynesian Phillips Curve," Banco de Espa�a Working Papers 0520, Banco de Espa�a.
  9. BAUWENs, Luc & LUBRANO , Michel, 1996. "Bayesian Inference on GARCH Models using the Gibbs Sampler," CORE Discussion Papers 1996027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  10. Jeremy Rudd & Karl Whelan, 2006. "Can Rational Expectations Sticky-Price Models Explain Inflation Dynamics?," American Economic Review, American Economic Association, vol. 96(1), pages 303-320, March.
  11. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
  12. Fama, Eugene F. & Gibbons, Michael R., 1984. "A comparison of inflation forecasts," Journal of Monetary Economics, Elsevier, vol. 13(3), pages 327-348, May.
  13. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:27:y:2012:i:5:p:812-830. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.