IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/77254.html
   My bibliography  Save this paper

Detecting Co-Movements in Noncausal Time Series

Author

Listed:
  • Cubadda, Gianluca
  • Hecq, Alain
  • Telg, Sean

Abstract

This paper introduces the notion of common noncausal features and proposes tools for detecting the presence of co-movements in economic and financial time series subject to phenomena such as asymmetric cycles and speculative bubbles. For purely causal or noncausal vector autoregressive models with more than one lag, the presence of a reduced rank structure allows to identify causal from noncausal systems using the usual Gaussian likelihood framework. This result cannot be extended to mixed causal-noncausal models, and an approximate maximum likelihood estimator assuming non-Gaussian disturbances is needed for this case. We find common bubbles in both commodity prices and price indicators.

Suggested Citation

  • Cubadda, Gianluca & Hecq, Alain & Telg, Sean, 2017. "Detecting Co-Movements in Noncausal Time Series," MPRA Paper 77254, University Library of Munich, Germany, revised 02 Mar 2017.
  • Handle: RePEc:pra:mprapa:77254
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/77254/1/MPRA_paper_77254.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alain Hecq & Lenard Lieb & Sean Telg, 2016. "Identification of Mixed Causal-Noncausal Models in Finite Samples," Annals of Economics and Statistics, GENES, issue 123-124, pages 307-331.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Cubadda, Gianluca & Hecq, Alain, 2001. "On non-contemporaneous short-run co-movements," Economics Letters, Elsevier, vol. 73(3), pages 389-397, December.
    4. Cubadda, Gianluca, 2007. "A unifying framework for analysing common cyclical features in cointegrated time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 896-906, October.
    5. Guillén, Osmani Teixeira & Hecq, Alain & Issler, João Victor & Saraiva, Diogo, 2015. "Forecasting multivariate time series under present-value model short- and long-run co-movement restrictions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 862-875.
    6. Vahid, Farshid & Engle, Robert F., 1997. "Codependent cycles," Journal of Econometrics, Elsevier, vol. 80(2), pages 199-221, October.
    7. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    8. Gourieroux, Christian & Jasiak, Joann, 2017. "Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation," Journal of Econometrics, Elsevier, vol. 200(1), pages 118-134.
    9. Hecq, A.W. & Issler, J.V., 2012. "A common-feature approach for testing present-value restrictions with financial data," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    10. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    11. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    12. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    13. Marco Centoni & Gianluca Cubadda, 2015. "Common Feature Analysis of Economic Time Series: An Overview and Recent Developments," CEIS Research Paper 355, Tor Vergata University, CEIS, revised 05 Oct 2015.
    14. Alain Hecq & Franz Palm & Jean-Pierre Urbain, 2001. "Testing for Common Cyclical Features in Var Models with Cointegration," CESifo Working Paper Series 451, CESifo.
    15. Christopher A. Sims, 1982. "Policy Analysis with Econometric Models," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 13(1), pages 107-164.
    16. Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    17. Yanagihara, Hirokazu, 2006. "Corrected version of AIC for selecting multivariate normal linear regression models in a general nonnormal case," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1070-1089, May.
    18. Gianluca Cubadda & Alain Hecq, 2011. "Testing for common autocorrelation in data‐rich environments," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 325-335, April.
    19. Issler, Joao Victor & Vahid, Farshid, 2001. "Common cycles and the importance of transitory shocks to macroeconomic aggregates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 449-475, June.
    20. Cubadda, Gianluca, 1999. "Common Cycles in Seasonal Non-stationary Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 273-291, May-June.
    21. Hecq, Alain & Palm, Franz C. & Urbain, Jean-Pierre, 2006. "Common cyclical features analysis in VAR models with cointegration," Journal of Econometrics, Elsevier, vol. 132(1), pages 117-141, May.
    22. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    23. Christian Gouriéroux & Joann Jasiak, 2015. "Semi-Parametric Estimation of Noncausal Vector Autoregression," Working Papers 2015-02, Center for Research in Economics and Statistics.
    24. Candelon, Bertrand & Hecq, Alain & Verschoor, Willem F.C., 2005. "Measuring common cyclical features during financial turmoil: Evidence of interdependence not contagion," Journal of International Money and Finance, Elsevier, vol. 24(8), pages 1317-1334, December.
    25. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca Cubadda & Alain Hecq, 2021. "Reduced Rank Regression Models in Economics and Finance," CEIS Research Paper 525, Tor Vergata University, CEIS, revised 08 Nov 2021.
    2. Gianluca Cubadda & Alain Hecq & Elisa Voisin, 2023. "Detecting Common Bubbles in Multivariate Mixed Causal–Noncausal Models," Econometrics, MDPI, vol. 11(1), pages 1-16, March.
    3. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    4. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillén, Osmani Teixeira & Hecq, Alain & Issler, João Victor & Saraiva, Diogo, 2015. "Forecasting multivariate time series under present-value model short- and long-run co-movement restrictions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 862-875.
    2. Gianluca Cubadda & Alain Hecq, 2021. "Reduced Rank Regression Models in Economics and Finance," CEIS Research Paper 525, Tor Vergata University, CEIS, revised 08 Nov 2021.
    3. Hecq, A.W. & Issler, J.V., 2012. "A common-feature approach for testing present-value restrictions with financial data," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. Marco Centoni & Gianluca Cubadda, 2011. "Modelling comovements of economic time series: a selective survey," Statistica, Department of Statistics, University of Bologna, vol. 71(2), pages 267-294.
    5. Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
    6. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    7. Paruolo, Paolo, 2006. "Common trends and cycles in I(2) VAR systems," Journal of Econometrics, Elsevier, vol. 132(1), pages 143-168, May.
    8. Neri, Marcelo Côrtes, 2014. "Brazil's middle classes," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 759, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    9. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
    10. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
    11. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    12. Justyna Wróblewska, 2012. "Bayesian Analysis of Weak Form Polynomial Reduced Rank Structures in VEC Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(4), pages 253-267, December.
    13. Marco Centoni & Gianluca Cubadda, 2015. "Common Feature Analysis of Economic Time Series: An Overview and Recent Developments," CEIS Research Paper 355, Tor Vergata University, CEIS, revised 05 Oct 2015.
    14. Cubadda, Gianluca & Hecq, Alain & Palm, Franz C., 2009. "Studying co-movements in large multivariate data prior to multivariate modelling," Journal of Econometrics, Elsevier, vol. 148(1), pages 25-35, January.
    15. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    16. Fabio Araujo & Joao Victor Issler, 2005. "Estimating the Stochastic Discount Factor without a Utility Function," Computing in Economics and Finance 2005 202, Society for Computational Economics.
    17. repec:fgv:epgewp:736 is not listed on IDEAS
    18. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    19. Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
    20. Gianluca Cubadda & Francesco Giancaterini & Alain Hecq & Joann Jasiak, 2023. "Optimization of the Generalized Covariance Estimator in Noncausal Processes," Papers 2306.14653, arXiv.org, revised Jan 2024.
    21. repec:cte:wsrepe:25392 is not listed on IDEAS
    22. Osmani Teixeira de Carvalho Guillén & Alain Hecq & João Victor Issler & Diogo Saraiva, 2013. "Time Series under Present-Value-Model Short- and Long-run Co-movement Restrictions," Working Papers Series 330, Central Bank of Brazil, Research Department.

    More about this item

    Keywords

    mixed causal-noncausal process; common features; vector autoregressive models; commodity prices; common bubbles.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:77254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.