IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons

  • Issler, João Victor
  • Rodrigues, Claudia
  • Burjack, Rafael

The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual frequencies. Data consists of metal-commodity prices at a monthly and quarterly frequencies from 1957 to 2012, extracted from the IFS, and annual data, provided from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009). We investigate short- and long-run comovement by applying the techniques and the tests proposed in the common-feature literature. One of the main contributions of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding out-of-sample forecasts, our main contribution is to show the benefits of forecast-combination techniques, which outperform individual-model forecasts - including the random-walk model. We use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates and functional forms to forecast the returns and prices of metal commodities. Using a large number of models (N large) and a large number of time periods (T large), we apply the techniques put forth by the common-feature literature on forecast combinations. Empirically, we show that models incorporating (short-run) common-cycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://bibliotecadigital.fgv.br/dspace/bitstream/10438/11176/3/Using-Common-Features-to-Understand-the-Behavior-of-Metal-Commodity-Prices-and-Forecast-them-at-Di-erent-Horizons.pdf
Download Restriction: no

Paper provided by FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil) in its series Economics Working Papers (Ensaios Economicos da EPGE) with number 744.

as
in new window

Length:
Date of creation: 22 Aug 2013
Handle: RePEc:fgv:epgewp:744
Contact details of provider: Postal:
Praia de Botafogo 190, sala 1100, Rio de Janeiro/RJ - CEP: 22253-900

Phone: 55-21-2559-5871
Fax: 55-21-2553-8821
Web page: http://epge.fgv.br
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-76, March.
  2. Lars Peter Hansen & Thomas J. Sargent & Thomas D. Tallarini Jr., 1997. "Robust Permanent Income and Pricing," Levine's Working Paper Archive 596, David K. Levine.
  3. C. John McDermott & Alasdair Scott & Paul Cashin, 1999. "The Myth of Comoving Commodity Prices," IMF Working Papers 99/169, International Monetary Fund.
  4. Christopher Otrok, 2000. "On Measuring the Welfare Cost of Business Cycles," Econometric Society World Congress 2000 Contributed Papers 1094, Econometric Society.
  5. Cashin, Paul & McDermott, C. John & Scott, Alasdair, 2002. "Booms and slumps in world commodity prices," Journal of Development Economics, Elsevier, vol. 69(1), pages 277-296, October.
  6. Athanasopoulos, George & Guillen, Osmani Teixeira Carvalho & Issler, João Victor & Vahid, Farshid, 2010. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Economics Working Papers (Ensaios Economicos da EPGE) 707, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  7. Vahid, F. & Issler, J.V., 2001. "The Importance Of Common Cyclical Features in VAR Analysis: A Monte-Carlo Study," Monash Econometrics and Business Statistics Working Papers 2/01, Monash University, Department of Econometrics and Business Statistics.
  8. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  9. Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
  10. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
  11. Martin Lettau, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, 06.
  12. Grilli, Enzo R & Yang, Maw Cheng, 1988. "Primary Commodity Prices, Manufactured Goods Prices, and the Terms of Trade of Developing Countries: What the Long Run Shows," World Bank Economic Review, World Bank Group, vol. 2(1), pages 1-47, January.
  13. Issler, João Victor & Lima, Luiz Renato Regis de Oliveira, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," Economics Working Papers (Ensaios Economicos da EPGE) 642, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  14. David Hendry & Michael P. Clements, 2001. "Pooling of Forecasts," Economics Papers 2002-W9, Economics Group, Nuffield College, University of Oxford.
  15. Issler, Joao Victor & Vahid, Farshid, 2001. "Common cycles and the importance of transitory shocks to macroeconomic aggregates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 449-475, June.
  16. Cuddington, John T & Urzua, Carlos M, 1989. "Trends and Cycles in the Net Barter Terms of Trade: A New Approach," Economic Journal, Royal Economic Society, vol. 99(396), pages 426-42, June.
  17. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
  18. Deaton, Angus & Laroque, Guy, 1996. "Competitive Storage and Commodity Price Dynamics," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 896-923, October.
  19. Campbell, John & Deaton, Angus, 1989. "Why Is Consumption So Smooth?," Scholarly Articles 3221494, Harvard University Department of Economics.
  20. Wallace, T D & Hussain, Ashiq, 1969. "The Use of Error Components Models in Combining Cross Section with Time Series Data," Econometrica, Econometric Society, vol. 37(1), pages 55-72, January.
  21. Edmund S. Phelps, 1968. "Money-Wage Dynamics and Labor-Market Equilibrium," Journal of Political Economy, University of Chicago Press, vol. 76, pages 678-678.
  22. Deaton, A., 1999. "Commodity Prices and Growth in Aftica," Papers 186, Princeton, Woodrow Wilson School - Development Studies.
  23. Zellner, A., 1992. "Statistics, Science and Public Policy," Papers 92-21, California Irvine - School of Social Sciences.
  24. Angus Deaton & Guy Laroque, 1992. "On the Behaviour of Commodity Prices," Review of Economic Studies, Oxford University Press, vol. 59(1), pages 1-23.
  25. Chambers, Marcus J & Bailey, Roy E, 1996. "A Theory of Commodity Price Fluctuations," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 924-957, October.
  26. Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
  27. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  28. Jerrett, Daniel & Cuddington, John T., 2008. "Broadening the statistical search for metal price super cycles to steel and related metals," Resources Policy, Elsevier, vol. 33(4), pages 188-195, December.
  29. Paul Cashin & Hong Liang & C. John McDermott, 2000. "How Persistent Are Shocks to World Commodity Prices?," IMF Staff Papers, Palgrave Macmillan, vol. 47(2), pages 2.
  30. Márcio Antônio Salvato & João Victor Issler & Angelo Mont'alverne Duarte, 2005. "Are Business Cycles All Alike In Europe?," Anais do XXXIII Encontro Nacional de Economia [Proceedings of the 33th Brazilian Economics Meeting] 031, ANPEC - Associação Nacional dos Centros de Pósgraduação em Economia [Brazilian Association of Graduate Programs in Economics].
  31. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-89, December.
  32. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-395, October.
  33. Lustig, Hanno & van Nieuwerburgh, Stijn & Verdelhan, Adrien, 2012. "The Wealth-Consumption Ratio," CEPR Discussion Papers 9022, C.E.P.R. Discussion Papers.
  34. Pemberton, James, 1996. "Growth trends, cyclical fluctuations, and welfare with non-expected utility preferences," Economics Letters, Elsevier, vol. 50(3), pages 387-392, March.
  35. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
  36. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  37. Issler, Joao Victor & Vahid, Farshid, 2006. "The missing link: using the NBER recession indicator to construct coincident and leading indices of economic activity," Journal of Econometrics, Elsevier, vol. 132(1), pages 281-303, May.
  38. Jim Dolmas, 1998. "Risk Preferences and the Welfare Cost of Business Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(3), pages 646676-6466, July.
  39. West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
  40. Hong, Harrison & Yogo, Motohiro, 2012. "What does futures market interest tell us about the macroeconomy and asset prices?," Journal of Financial Economics, Elsevier, vol. 105(3), pages 473-490.
  41. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  42. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 293-318.
  43. repec:fgv:epgrbe:v:47:n:2:a:1 is not listed on IDEAS
  44. Vahid, F & Engle, Robert F, 1993. "Common Trends and Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-360, Oct.-Dec..
  45. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  46. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
  47. Cuddington, John T., 1992. "Long-run trends in 26 primary commodity prices : A disaggregated look at the Prebisch-Singer hypothesis," Journal of Development Economics, Elsevier, vol. 39(2), pages 207-227, October.
  48. Martin Lettau & Sydney C. Ludvigson, 2004. "Understanding Trend and Cycle in Asset Values: Reevaluating the Wealth Effect on Consumption," American Economic Review, American Economic Association, vol. 94(1), pages 276-299, March.
  49. Labys, W. C. & Achouch, A. & Terraza, M., 1999. "Metal prices and the business cycle," Resources Policy, Elsevier, vol. 25(4), pages 229-238, December.
  50. Engle, Robert F. & Issler, Joao Victor, 1995. "Estimating common sectoral cycles," Journal of Monetary Economics, Elsevier, vol. 35(1), pages 83-113, February.
  51. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
  52. Batchelor, Roy, 2007. "Bias in macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(2), pages 189-203.
  53. Roy Batchelor, 2007. "Forecaster Behaviour and Bias in Macroeconomic Forecasts," Ifo Working Paper Series Ifo Working Paper No. 39, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  54. Fuller, Wayne A. & Battese, George E., 1974. "Estimation of linear models with crossed-error structure," Journal of Econometrics, Elsevier, vol. 2(1), pages 67-78, May.
  55. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-80, November.
  56. Hecq, Alain & Palm, Franz C. & Urbain, Jean-Pierre, 2006. "Common cyclical features analysis in VAR models with cointegration," Journal of Econometrics, Elsevier, vol. 132(1), pages 117-141, May.
  57. Proietti, Tommaso, 1997. "Short-Run Dynamics in Cointegrated Systems," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(3), pages 405-22, August.
  58. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  59. Vahid, Farshid & Engle, Robert F., 1997. "Codependent cycles," Journal of Econometrics, Elsevier, vol. 80(2), pages 199-221, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fgv:epgewp:744. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Núcleo de Computação da EPGE)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.