IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons

The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://bibliotecadigital.fgv.br/dspace/bitstream/10438/10351/6/Using-Common-Features-to-Understand-the-Behavior-of-Metal-Commodity-Prices-and-Forecast-them-at-Diferent-Horizons.pdf
Download Restriction: no

Paper provided by FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil) in its series Economics Working Papers (Ensaios Economicos da EPGE) with number 735.

as
in new window

Length:
Date of creation: 03 Jun 2013
Date of revision:
Handle: RePEc:fgv:epgewp:735
Contact details of provider: Postal:
Praia de Botafogo 190, sala 1100, Rio de Janeiro/RJ - CEP: 22253-900

Phone: 55-21-2559-5871
Fax: 55-21-2553-8821
Web page: http://epge.fgv.br
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jerrett, Daniel & Cuddington, John T., 2008. "Broadening the statistical search for metal price super cycles to steel and related metals," Resources Policy, Elsevier, vol. 33(4), pages 188-195, December.
  2. Cuddington, John T & Urzua, Carlos M, 1989. "Trends and Cycles in the Net Barter Terms of Trade: A New Approach," Economic Journal, Royal Economic Society, vol. 99(396), pages 426-42, June.
  3. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
  4. Martin Lettau & Sydney C. Ludvigson, 2004. "Understanding Trend and Cycle in Asset Values: Reevaluating the Wealth Effect on Consumption," American Economic Review, American Economic Association, vol. 94(1), pages 276-299, March.
  5. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
  6. Proietti, Tommaso, 1997. "Short-Run Dynamics in Cointegrated Systems," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(3), pages 405-22, August.
  7. David Hendry & Michael P. Clements, 2001. "Pooling of Forecasts," Economics Papers 2002-W9, Economics Group, Nuffield College, University of Oxford.
  8. Lettau, Martin & Ludvigson, Sydney, 1999. "Consumption, Aggregate Wealth and Expected Stock Returns," CEPR Discussion Papers 2223, C.E.P.R. Discussion Papers.
  9. Lustig, Hanno & van Nieuwerburgh, Stijn & Verdelhan, Adrien, 2012. "The Wealth-Consumption Ratio," CEPR Discussion Papers 9022, C.E.P.R. Discussion Papers.
  10. Angus Deaton, 1999. "Commodity Prices and Growth in Africa," Journal of Economic Perspectives, American Economic Association, vol. 13(3), pages 23-40, Summer.
  11. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  12. George Athanasopoulos & Osmani Teixeira de Carvalho Guillén & João Victor Issler & Farshid Vahid, 2010. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Working Papers Series 205, Central Bank of Brazil, Research Department.
  13. Paul Cashin & Hong Liang & C. John McDermott, 2000. "How Persistent Are Shocks to World Commodity Prices?," IMF Staff Papers, Palgrave Macmillan, vol. 47(2), pages 2.
  14. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-89, December.
  15. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  16. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
  17. Lars Hansen & Thomas Sargent & Thomas Tallarini, . "Robust Permanent Income and Pricing," GSIA Working Papers 1997-51, Carnegie Mellon University, Tepper School of Business.
  18. Chambers, Marcus J & Bailey, Roy E, 1996. "A Theory of Commodity Price Fluctuations," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 924-57, October.
  19. Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," Economics Working Papers (Ensaios Economicos da EPGE) 650, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  20. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
  21. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 293-318.
  22. Deaton, Angus & Laroque, Guy, 1996. "Competitive Storage and Commodity Price Dynamics," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 896-923, October.
  23. Fuller, Wayne A. & Battese, George E., 1974. "Estimation of linear models with crossed-error structure," Journal of Econometrics, Elsevier, vol. 2(1), pages 67-78, May.
  24. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-80, October.
  25. Batchelor, Roy, 2007. "Bias in macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(2), pages 189-203.
  26. Peter C.B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Cowles Foundation Discussion Papers 1222, Cowles Foundation for Research in Economics, Yale University.
  27. Chris Otrok, 1999. "On Measuring the Welfare Cost of Business Cycles," Virginia Economics Online Papers 318, University of Virginia, Department of Economics.
  28. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  29. Harrison Hong & Motohiro Yogo, 2011. "What Does Futures Market Interest Tell Us about the Macroeconomy and Asset Prices?," NBER Working Papers 16712, National Bureau of Economic Research, Inc.
  30. Angus Deaton & Guy Laroque, 1990. "On The Behavior of Commodity Prices," NBER Working Papers 3439, National Bureau of Economic Research, Inc.
  31. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
  32. West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
  33. Grilli, Enzo R & Yang, Maw Cheng, 1988. "Primary Commodity Prices, Manufactured Goods Prices, and the Terms of Trade of Developing Countries: What the Long Run Shows," World Bank Economic Review, World Bank Group, vol. 2(1), pages 1-47, January.
  34. C. John McDermott & Paul Cashin & Alasdair Scott, 1999. "Booms and Slumps in World Commodity Prices," IMF Working Papers 99/155, International Monetary Fund.
  35. Campbell, John & Deaton, Angus, 1989. "Why Is Consumption So Smooth?," Scholarly Articles 3221494, Harvard University Department of Economics.
  36. Paul Cashin & C John McDermott & Alasdair Scott, 1999. "The myth of co-moving commodity prices," Reserve Bank of New Zealand Discussion Paper Series G99/9, Reserve Bank of New Zealand.
  37. Vahid, Farshid & Engle, Robert F., 1997. "Codependent cycles," Journal of Econometrics, Elsevier, vol. 80(2), pages 199-221, October.
  38. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-95, October.
  39. Issler, Joao Victor & Vahid, Farshid, 2006. "The missing link: using the NBER recession indicator to construct coincident and leading indices of economic activity," Journal of Econometrics, Elsevier, vol. 132(1), pages 281-303, May.
  40. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  41. Roy Batchelor, 2007. "Forecaster Behaviour and Bias in Macroeconomic Forecasts," Ifo Working Paper Series Ifo Working Paper No. 39, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  42. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
  43. Wallace, T D & Hussain, Ashiq, 1969. "The Use of Error Components Models in Combining Cross Section with Time Series Data," Econometrica, Econometric Society, vol. 37(1), pages 55-72, January.
  44. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  45. Vahid, F & Engle, Robert F, 1993. "Common Trends and Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-60, Oct.-Dec..
  46. repec:fgv:epgrbe:v:47:n:2:a:1 is not listed on IDEAS
  47. Vahid, F. & Issler, J.V., 2001. "The Importance Of Common Cyclical Features in VAR Analysis: A Monte-Carlo Study," Monash Econometrics and Business Statistics Working Papers 2/01, Monash University, Department of Econometrics and Business Statistics.
  48. Zellner, A., 1992. "Statistics, Science and Public Policy," Papers 92-21, California Irvine - School of Social Sciences.
  49. Cuddington, John T., 1992. "Long-run trends in 26 primary commodity prices : A disaggregated look at the Prebisch-Singer hypothesis," Journal of Development Economics, Elsevier, vol. 39(2), pages 207-227, October.
  50. Issler, Joao Victor & Vahid, Farshid, 2001. "Common cycles and the importance of transitory shocks to macroeconomic aggregates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 449-475, June.
  51. Hecq, Alain & Palm, Franz C. & Urbain, Jean-Pierre, 2006. "Common cyclical features analysis in VAR models with cointegration," Journal of Econometrics, Elsevier, vol. 132(1), pages 117-141, May.
  52. Engle, Robert F. & Issler, Joao Victor, 1995. "Estimating common sectoral cycles," Journal of Monetary Economics, Elsevier, vol. 35(1), pages 83-113, February.
  53. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
  54. Labys, W. C. & Achouch, A. & Terraza, M., 1999. "Metal prices and the business cycle," Resources Policy, Elsevier, vol. 25(4), pages 229-238, December.
  55. Edmund S. Phelps, 1968. "Money-Wage Dynamics and Labor-Market Equilibrium," Journal of Political Economy, University of Chicago Press, vol. 76, pages 678.
  56. Jim Dolmas, 1998. "Risk Preferences and the Welfare Cost of Business Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(3), pages 646-676, July.
  57. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-80, November.
  58. Márcio Antônio Salvato & João Victor Issler & Angelo Mont'alverne Duarte, 2005. "Are Business Cycles All Alike In Europe?," Anais do XXXIII Encontro Nacional de Economia [Proceedings of the 33th Brazilian Economics Meeting] 031, ANPEC - Associação Nacional dos Centros de Pósgraduação em Economia [Brazilian Association of Graduate Programs in Economics].
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fgv:epgewp:735. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Núcleo de Computação da EPGE)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.