IDEAS home Printed from
   My bibliography  Save this paper

Testing for Common Autocorrelation in Data Rich Environments



This paper proposes a strategy to detect the presence of common serial correlation in high-dimensional systems. We show by simulations that univariate autocorrelation tests on the factors obtained by partial least squares outperform traditional tests based on canonical correlations.

Suggested Citation

  • Gianluca Cubadda & Alain Hecq, 2009. "Testing for Common Autocorrelation in Data Rich Environments," CEIS Research Paper 153, Tor Vergata University, CEIS, revised 04 Dec 2009.
  • Handle: RePEc:rtv:ceisrp:153

    Download full text from publisher

    File URL:
    File Function: Main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    2. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    3. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    4. Cubadda, Gianluca & Hecq, Alain & Palm, Franz C., 2009. "Studying co-movements in large multivariate data prior to multivariate modelling," Journal of Econometrics, Elsevier, vol. 148(1), pages 25-35, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    2. Marco Centoni & Gianluca Cubadda, 2015. "Common Feature Analysis of Economic Time Series: An Overview and Recent Developments," CEIS Research Paper 355, Tor Vergata University, CEIS, revised 05 Oct 2015.
    3. Hecq Alain & Palm Franz C. & Laurent Sébastien, 2016. "On the Univariate Representation of BEKK Models with Common Factors," Journal of Time Series Econometrics, De Gruyter, vol. 8(2), pages 91-113, July.
    4. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017. "A vector heterogeneous autoregressive index model for realized volatility measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
    5. Hecq Alain & Laurent Sébastien & Palm Franz, 2011. "On the Univariate Representation of Multivariate Volatility Models with Common Factors," Research Memorandum 011, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    6. Bernardini, Emmanuela & Cubadda, Gianluca, 2015. "Macroeconomic forecasting and structural analysis through regularized reduced-rank regression," International Journal of Forecasting, Elsevier, vol. 31(3), pages 682-691.
    7. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2013. "A general to specific approach for constructing composite business cycle indicators," Economic Modelling, Elsevier, vol. 33(C), pages 367-374.
    8. Marco Centoni & Gianluca Cubadda, 2011. "Modelling comovements of economic time series: a selective survey," Statistica, Department of Statistics, University of Bologna, vol. 71(2), pages 267-294.
    9. Cubadda, Gianluca & Guardabascio, Barbara, 2012. "A medium-N approach to macroeconomic forecasting," Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
    10. Gianluca Cubadda & Barbara Guardabascio, 2017. "Representation, Estimation and Forecasting of the Multivariate Index-Augmented Autoregressive Model," CEIS Research Paper 397, Tor Vergata University, CEIS, revised 07 Feb 2017.

    More about this item


    Serial correlation common feature; high-dimensional systems; partial least squares. JEL code: C32;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:153. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Barbara Piazzi). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.