IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Medium-N Approach to Macroeconomic Forecasting

This paper considers methods for forecasting macroeconomic time series in a framework where the number of predictors, N, is too large to apply traditional regression models but not su¢ciently large to resort to statistical inference based on double asymptotics. Our interest is motivated by a body of empirical research suggesting that popular data-rich prediction methods perform best when N ranges from 20 to 50. In order to accomplish our goal, we examine the conditions under which partial least squares and principal component regression provide consistent estimates of a stable autoregressive distributed lag model as only the number of observations, T, diverges. We show both by simulations and empirical applications that the proposed methods compare well to models that are widely used in macroeconomic forecasting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://www.ceistorvergata.it/repec/rpaper/RP176.pdf
File Function: Main text
Download Restriction: no

Paper provided by Tor Vergata University, CEIS in its series CEIS Research Paper with number 176.

as
in new window

Length: 20 pages
Date of creation: 09 Dec 2010
Date of revision: 09 Dec 2010
Handle: RePEc:rtv:ceisrp:176
Contact details of provider: Postal: CEIS - Centre for Economic and International Studies - Faculty of Economics - University of Rome "Tor Vergata" - Via Columbia, 2 00133 Roma
Phone: +390672595601
Fax: +39062020687
Web page: http://www.ceistorvergata.it
Email:


More information through EDIRC

Order Information: Postal: CEIS - Centre for Economic and International Studies - Faculty of Economics - University of Rome "Tor Vergata" - Via Columbia, 2 00133 Roma
Web: http://www.ceistorvergata.it Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
  2. Almoy, Trygve, 1996. "A simulation study on comparison of prediction methods when only a few components are relevant," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 87-107, January.
  3. Marco Centoni & Gianluca Cubadda & Alain Hecq, 2008. "Common Shocks, Common Dynamics, and the International Business Cycle," CEIS Research Paper 106, Tor Vergata University, CEIS, revised 07 Jul 2008.
  4. Jan J.J. Groen & George Kapetanios, 2008. "Revisiting Useful Approaches to Data-Rich Macroeconomic Forecasting," Working Papers 624, Queen Mary University of London, School of Economics and Finance.
  5. Gianluca Cubadda & Alain Hecq & Franz C. Palm, 2008. "Studying Co-Movements in Large Multivariate Data Prior to Multivariate Modelling," CEIS Research Paper 125, Tor Vergata University, CEIS, revised 14 Jul 2008.
  6. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
  8. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25.
  9. Eickmeier, Sandra & Ng, Tim, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Discussion Paper Series 1: Economic Studies 2009,11, Deutsche Bundesbank, Research Centre.
  10. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  11. Gianluca Cubadda, 2007. "A Unifying Framework for Analysing Common Cyclical Features in Cointegrated Time Series," CEIS Research Paper 102, Tor Vergata University, CEIS.
  12. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  13. Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, EconWPA.
  14. Caggiano, Giovanni & Kapetanios, George & Labhard, Vincent, 2009. "Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK," Working Paper Series 1051, European Central Bank.
  15. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  16. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
  17. Gianluca Cubadda & Alain Hecq, 2011. "Testing for common autocorrelation in data‐rich environments," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 325-335, April.
  18. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  19. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:176. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Barbara Piazzi)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.