IDEAS home Printed from https://ideas.repec.org/p/irv/wpaper/192005.html
   My bibliography  Save this paper

Heterogeneity in Individual Expectations, Sentiment, and Constant-Gain Learning

Author

Listed:
  • Stephen J. Cole

    (Department of Economics, Marquette University)

  • Fabio Milani

    (Department of Economics, University of California-Irvine)

Abstract

The adaptive learning approach has been fruitfully employed to model the formation of aggregate expectations at the macroeconomic level, as an alternative to rational expectations. This paper uses adaptive learning to understand, instead, the formation of expectations at the micro-level, by focusing on individual expectations and, in particular, trying to account for their heterogeneity. We exploit survey data on output and inflation expectations by individual professional forecasters. We link micro and macro by endowing forecasters with the same information set that they would have as economic agents in a benchmark New Keynesian model. Forecasters are, however, allowed to differ in the constant gain values that they use to update their beliefs. We estimate the best-fitting constant gain for each forecaster. We also extract individual measures of sentiment, defined as the degrees of excess optimism and pessimism that cannot be justified by the near-rational learning model, given the state of the economy and the updated beliefs. Our results highlight the heterogeneity in the gain coefficients adopted by forecasters, which is particularly pronounced at the beginning of the sample. The median values are consistent with those typically estimated using aggregate data, and display some moderate time variation: they occasionally jump to higher values in the 1970-80s, and stabilize in the 1990s and 2000s. Individual sentiment is persistent and heterogeneous. Differences in sentiment, however, don't simply cancel out in the aggregate: the majority of forecasters exhibit excess optimism, or excess pessimism, at the same time.

Suggested Citation

  • Stephen J. Cole & Fabio Milani, 2020. "Heterogeneity in Individual Expectations, Sentiment, and Constant-Gain Learning," Working Papers 192005, University of California-Irvine, Department of Economics.
  • Handle: RePEc:irv:wpaper:192005
    as

    Download full text from publisher

    File URL: https://www.economics.uci.edu/research/wp/1920/19-20-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evans, George W. & Honkapohja, Seppo & Mitra, Kaushik, 2009. "Anticipated fiscal policy and adaptive learning," Journal of Monetary Economics, Elsevier, vol. 56(7), pages 930-953, October.
    2. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    3. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    4. Cole, Stephen J. & Milani, Fabio, 2019. "The Misspecification Of Expectations In New Keynesian Models: A Dsge-Var Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 974-1007, April.
    5. Berardi, Michele, 2019. "A probabilistic interpretation of the constant gain algorithm," MPRA Paper 94023, University Library of Munich, Germany.
    6. Stephen J. Cole & Fabio Milani, 2016. "The Misspecification of Expectations in New Keynesian Models: A DSGE-VAR Approach," CESifo Working Paper Series 6099, CESifo.
    7. George William Evans, 2001. "Expectations in Macroeconomics Adaptive versus Eductive Learning," Revue économique, Presses de Sciences-Po, vol. 52(3), pages 573-582.
    8. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    9. Stephen J. Cole, 2020. "The Limits of Central Bank forward Guidance under Learning," International Journal of Central Banking, International Journal of Central Banking, vol. 16(4), pages 199-250, September.
    10. Vitor Gaspar & Frank Smets & David Vestin, 2006. "Adaptive Learning, Persistence, and Optimal Monetary Policy," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 376-385, 04-05.
    11. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    12. Branch, William A. & Evans, George W., 2006. "A simple recursive forecasting model," Economics Letters, Elsevier, vol. 91(2), pages 158-166, May.
    13. William A. Branch, 2004. "The Theory of Rationally Heterogeneous Expectations: Evidence from Survey Data on Inflation Expectations," Economic Journal, Royal Economic Society, vol. 114(497), pages 592-621, July.
    14. Stephen J. Cole, 2021. "Learning and the Effectiveness of Central Bank Forward Guidance," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 157-200, February.
    15. Krippner, Leo, 2013. "Measuring the stance of monetary policy in zero lower bound environments," Economics Letters, Elsevier, vol. 118(1), pages 135-138.
    16. Sergey Slobodyan & Raf Wouters, 2012. "Learning in a Medium-Scale DSGE Model with Expectations Based on Small Forecasting Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 65-101, April.
    17. Sargent, Thomas J., 1993. "Bounded Rationality in Macroeconomics: The Arne Ryde Memorial Lectures," OUP Catalogue, Oxford University Press, number 9780198288695.
    18. Preston, Bruce, 2006. "Adaptive learning, forecast-based instrument rules and monetary policy," Journal of Monetary Economics, Elsevier, vol. 53(3), pages 507-535, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Ilabaca & Fabio Milani, 2020. "Heterogeneous Expectations, Indeterminacy, and Postwar US Business Cycles," Working Papers 192003, University of California-Irvine, Department of Economics.
    2. Francisco Ilabaca & Fabio Milani, 2020. "Heterogeneous Expectations, Indeterminacy, and Postwar US Business Cycles," CESifo Working Paper Series 8224, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen J. Cole & Fabio Milani, 2020. "Heterogeneity in Individual Expectations, Sentiment, and Constant-Gain Learning," CESifo Working Paper Series 8343, CESifo.
    2. Cole, Stephen J., 2020. "The influence of learning and price-level targeting on central bank forward guidance," Journal of Macroeconomics, Elsevier, vol. 65(C).
    3. Greta Meggiorini & Fabio Milani, 2021. "Behavioral New Keynesian Models: Learning vs. Cognitive Discounting," Working Papers 202103, University of California-Irvine, Department of Economics.
    4. George W. Evans & Seppo Honkapohja, 2009. "Expectations, Learning and Monetary Policy: An Overview of Recent Research," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 2, pages 027-076, Central Bank of Chile.
    5. Stephen J. Cole, 2021. "Learning and the Effectiveness of Central Bank Forward Guidance," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 157-200, February.
    6. Kuang, Pei & Mitra, Kaushik, 2016. "Long-run growth uncertainty," Journal of Monetary Economics, Elsevier, vol. 79(C), pages 67-80.
    7. Stephen J. Cole & Enrique Martinez-Garcia, 2019. "The Effect of Central Bank Credibility on Forward Guidance in an Estimated New Keynesian Model," Globalization Institute Working Papers 375, Federal Reserve Bank of Dallas, revised 20 Mar 2021.
    8. Gavin Goy & Cars Homme & Kostas Mavromatis, 2018. "Forward Guidance and the Role of Central Bank Credibility," DNB Working Papers 614, Netherlands Central Bank, Research Department.
    9. Giovanni Angelini & Luca Fanelli, 2016. "Misspecification and Expectations Correction in New Keynesian DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 623-649, October.
    10. Benhabib, Jess & Evans, George W. & Honkapohja, Seppo, 2014. "Liquidity traps and expectation dynamics: Fiscal stimulus or fiscal austerity?," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 220-238.
    11. Mele, Antonio & Molnár, Krisztina & Santoro, Sergio, 2020. "On the perils of stabilizing prices when agents are learning," Journal of Monetary Economics, Elsevier, vol. 115(C), pages 339-353.
    12. Stephen J. Cole, 2020. "The Limits of Central Bank forward Guidance under Learning," International Journal of Central Banking, International Journal of Central Banking, vol. 16(4), pages 199-250, September.
    13. Chatterjee, Pratiti & Milani, Fabio, 2020. "Perceived uncertainty shocks, excess optimism-pessimism, and learning in the business cycle," Journal of Economic Behavior & Organization, Elsevier, vol. 179(C), pages 342-360.
    14. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    15. Ricardo Nunes, 2010. "Inflation Dynamics: The Role of Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1161-1172, September.
    16. F. Di Pace & K. Mitra & S. Zhang, 2021. "Adaptive Learning and Labor Market Dynamics," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(2-3), pages 441-475, March.
    17. Kaushik Mitra & George W. Evans & Seppo Honkapohja, 2012. "Fiscal Policy and Learning," CDMA Working Paper Series 201202, Centre for Dynamic Macroeconomic Analysis, revised 18 Jun 2013.
    18. Milani, Fabio, 2017. "Sentiment and the U.S. business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 289-311.
    19. Mitra, Kaushik & Evans, George W. & Honkapohja, Seppo, 2013. "Policy change and learning in the RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 1947-1971.
    20. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.

    More about this item

    Keywords

    Individual Survey Forecasts; Heterogeneous Expectations; Constant-Gain Learning; New Keynesian Model; Sentiment Shocks; Waves of Optimism and Pessimism; Evolving Beliefs;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E50 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - General
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General
    • E70 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - General
    • E71 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on the Macro Economy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:irv:wpaper:192005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/deucius.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Melissa Valdez (email available below). General contact details of provider: https://edirc.repec.org/data/deucius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.