IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

On the Initialization of Adaptive Learning in Macroeconomic Models

We review and evaluate methods previously adopted in the applied literature of adaptive learning in order to initialize agents’ beliefs. Previous methods are classified into three broad classes: equilibrium-related, training sample-based, and estimation-based. We conduct several simulations comparing the accuracy of the initial estimates provided by these methods and how they affect the accuracy of other estimated model parameters. We find evidence against their joint estimation with standard moment conditions: as the accuracy of estimated initials tends to deteriorate with the sample size, spillover effects also deteriorate the accuracy of the estimates of the model’s structural parameters. We show how this problem can be attenuated by penalizing the variance of estimation errors. Even so, the joint estimation of learning initials with other model parameters is still subject to severe distortions in small samples. We find that equilibrium-related and training sample-based initials are less prone to these issues. We also demonstrate the empirical relevance of our results by estimating a New Keynesian Phillips curve with learning, where we find that our estimation approach provides robustness to the initialization of learning. That allows us to conclude that under adaptive learning the degree of price stickiness is lower compared to inferences under rational expectations, whereas the fraction of backward looking price setters increases.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://dx.doi.org/10.3929/ethz-a-010793139
Download Restriction: no

Paper provided by KOF Swiss Economic Institute, ETH Zurich in its series KOF Working papers with number 16-422.

as
in new window

Length: 44 pages
Date of creation: Dec 2016
Handle: RePEc:kof:wpskof:16-422
Contact details of provider: Postal:
Leonhardstrasse 21, CH-8092 Zürich

Phone: +41 44 632 42 39
Fax: +41 44 632 12 18
Web page: http://www.kof.ethz.ch
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Slobodyan, Sergey & Wouters, Raf, 2012. "Learning in an estimated medium-scale DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 26-46.
  2. KevinX.D. Huang & Zheng Liu & Tao Zha, 2009. "Learning, Adaptive Expectations and Technology Shocks," Economic Journal, Royal Economic Society, vol. 119(536), pages 377-405, 03.
  3. Athanasios Orphanides & John C. Williams, 2005. "Inflation scares and forecast-based monetary policy," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 498-527, April.
  4. repec:eee:dyncon:v:78:y:2017:i:c:p:26-53 is not listed on IDEAS
  5. Giorgio E. Primiceri, 2006. "Why Inflation Rose and Fell: Policy-Makers' Beliefs and U. S. Postwar Stabilization Policy," The Quarterly Journal of Economics, Oxford University Press, vol. 121(3), pages 867-901.
  6. Lubik, Thomas A. & Matthes, Christian, 2016. "Indeterminacy and learning: An analysis of monetary policy in the Great Inflation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 85-106.
  7. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
  8. Stefano Eusepi & Bruce Preston, 2011. "Expectations, Learning, and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 101(6), pages 2844-2872, October.
  9. Orphanides, Athanasios & Williams, John C., 2005. "The decline of activist stabilization policy: Natural rate misperceptions, learning, and expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1927-1950, November.
  10. Pfajfar, Damjan & Santoro, Emiliano, 2010. "Heterogeneity, learning and information stickiness in inflation expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 426-444, September.
  11. James Bullard & Stefano Eusepi, 2005. "Did the Great Inflation Occur Despite Policymaker Commitment to a Taylor Rule?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 324-359, April.
  12. Fuhrer, Jeffrey C. & Moore, George R. & Schuh, Scott D., 1995. "Estimating the linear-quadratic inventory model Maximum likelihood versus generalized method of moments," Journal of Monetary Economics, Elsevier, vol. 35(1), pages 115-157, February.
  13. Albert Marcet & Juan P. Nicolini, 2003. "Recurrent Hyperinflations and Learning," American Economic Review, American Economic Association, vol. 93(5), pages 1476-1498, December.
  14. George W. Evans & Seppo Honkapohja, 2009. "Robust Learning Stability with Operational Monetary Policy Rules," Central Banking, Analysis, and Economic Policies Book Series,in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.), Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 5, pages 145-170 Central Bank of Chile.
  15. Eva Carceles-Poveda & Chryssi Giannitsarou, 2008. "Asset Pricing with Adaptive Learning," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 629-651, July.
  16. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
  17. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
  18. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
  19. Chevillon, Guillaume & Massmann, Michael & Mavroeidis, Sophocles, 2010. "Inference in models with adaptive learning," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 341-351, April.
  20. Orphanides, Athanasios & Williams, John C., 2005. "The decline of activist stabilization policy: Natural rate misperceptions, learning, and expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1927-1950, November.
  21. Berardi, Michele & Galimberti, Jaqueson K., 2014. "A note on the representative adaptive learning algorithm," Economics Letters, Elsevier, vol. 124(1), pages 104-107.
  22. Evans, George W. & Honkapohja, S., 1998. "Stochastic gradient learning in the cobweb model," Economics Letters, Elsevier, vol. 61(3), pages 333-337, December.
  23. Thomas Sargent & Noah Williams & Tao Zha, 2006. "Shocks and Government Beliefs: The Rise and Fall of American Inflation," American Economic Review, American Economic Association, vol. 96(4), pages 1193-1224, September.
  24. Milani, Fabio, 2008. "Learning, monetary policy rules, and macroeconomic stability," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3148-3165, October.
  25. Milani, Fabio, 2014. "Learning and time-varying macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 94-114.
  26. Sergey Slobodyan & Raf Wouters, 2012. "Learning in a Medium-Scale DSGE Model with Expectations Based on Small Forecasting Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 65-101, April.
  27. Fabio Milani, 2011. "Expectation Shocks and Learning as Drivers of the Business Cycle," Economic Journal, Royal Economic Society, vol. 121(552), pages 379-401, 05.
  28. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
  29. Eva Carceles-Poveda & Chryssi Giannitsarou, 2008. "Asset Pricing with Adaptive Learning," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 629-651, July.
  30. Michele Berardi & Jaqueson K Galimberti, 2017. "Smoothing-based Initialization for Learning-to-Forecast Algorithms," KOF Working papers 17-425, KOF Swiss Economic Institute, ETH Zurich.
  31. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
  32. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
  33. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  34. Carboni, Giacomo & Ellison, Martin, 2009. "The Great Inflation and the Greenbook," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 831-841, September.
  35. Eric Gaus & Srikanth Ramamurthy, 2012. "Estimation of Constant Gain Learning Models," Working Papers 12-01, Ursinus College, Department of Economics, revised 01 Apr 2014.
  36. Barucci, Emilio & Landi, Leonardo, 1997. "Least mean squares learning in self-referential linear stochastic models," Economics Letters, Elsevier, vol. 57(3), pages 313-317, December.
  37. Bray, Margaret M & Savin, Nathan E, 1986. "Rational Expectations Equilibria, Learning, and Model Specification," Econometrica, Econometric Society, vol. 54(5), pages 1129-1160, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kof:wpskof:16-422. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.