IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v124y2014i1p104-107.html
   My bibliography  Save this article

A note on the representative adaptive learning algorithm

Author

Listed:
  • Berardi, Michele
  • Galimberti, Jaqueson K.

Abstract

We compare forecasts from different adaptive learning algorithms and calibrations applied to US real-time data on inflation and growth. We find that the Least Squares with constant gains adjusted to match (past) survey forecasts provides the best overall performance both in terms of forecasting accuracy and in matching (future) survey forecasts.

Suggested Citation

  • Berardi, Michele & Galimberti, Jaqueson K., 2014. "A note on the representative adaptive learning algorithm," Economics Letters, Elsevier, vol. 124(1), pages 104-107.
  • Handle: RePEc:eee:ecolet:v:124:y:2014:i:1:p:104-107
    DOI: 10.1016/j.econlet.2014.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176514001566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2014.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Stark, Tom & Croushore, Dean, 2002. "Reply to the comments on 'Forecasting with a real-time data set for macroeconomists'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 563-567, December.
    3. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    4. Andrew J. Patton & Allan Timmermann, 2011. "Predictability of Output Growth and Inflation: A Multi-Horizon Survey Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 397-410, July.
    5. James Bullard & Stefano Eusepi, 2005. "Did the Great Inflation Occur Despite Policymaker Commitment to a Taylor Rule?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 324-359, April.
    6. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    7. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    8. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    9. James H. Stock & Mark W. Watson, 2003. "Has the business cycle changed?," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 9-56.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Branch, William A. & Evans, George W., 2006. "A simple recursive forecasting model," Economics Letters, Elsevier, vol. 91(2), pages 158-166, May.
    13. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
    14. Giannitsarou, Chryssi, 2005. "E-Stability Does Not Imply Learnability," Macroeconomic Dynamics, Cambridge University Press, vol. 9(2), pages 276-287, April.
    15. Evans, George W. & Honkapohja, S., 1998. "Stochastic gradient learning in the cobweb model," Economics Letters, Elsevier, vol. 61(3), pages 333-337, December.
    16. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    17. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    18. Heinemann, Maik, 2000. "Convergence Of Adaptive Learning And Expectational Stability: The Case Of Multiple Rational-Expectations Equilibria," Macroeconomic Dynamics, Cambridge University Press, vol. 4(3), pages 263-288, September.
    19. Barucci, Emilio & Landi, Leonardo, 1997. "Least mean squares learning in self-referential linear stochastic models," Economics Letters, Elsevier, vol. 57(3), pages 313-317, December.
    20. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine," Centre for Growth and Business Cycle Research Discussion Paper Series 175, Economics, The University of Manchester.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Strobach & Carin van der Cruijsen, 2015. "The formation of European inflation expectations: One learning rule does not fit all," DNB Working Papers 472, Netherlands Central Bank, Research Department.
    2. Galimberti Jaqueson K., 2024. "Initial Beliefs Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 24(1), pages 45-96, January.
    3. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    4. Damjanovic, Tatiana & Girdėnas, Šarūnas & Liu, Keqing, 2015. "Stationarity of econometric learning with bounded memory and a predicted state variable," Economics Letters, Elsevier, vol. 130(C), pages 93-96.
    5. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
    6. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    7. Galimberti, Jaqueson K., 2019. "An approximation of the distribution of learning estimates in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 102(C), pages 29-43.
    8. Damjanovic, Tatiana & Girdėnas, Šarūnas & Liu, Keqing, 2015. "Stationarity of econometric learning with bounded memory and a predicted state variable," Economics Letters, Elsevier, vol. 130(C), pages 93-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    2. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    3. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    4. Christina Strobach & Carin van der Cruijsen, 2015. "The formation of European inflation expectations: One learning rule does not fit all," DNB Working Papers 472, Netherlands Central Bank, Research Department.
    5. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    6. Bovi, Maurizio, 2013. "Are the representative agent’s beliefs based on efficient econometric models?," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 633-648.
    7. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    8. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    9. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
    10. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine," Centre for Growth and Business Cycle Research Discussion Paper Series 175, Economics, The University of Manchester.
    11. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
    12. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    13. Timmermann, Allan & Zhu, Yinchu, 2019. "Comparing Forecasting Performance with Panel Data," CEPR Discussion Papers 13746, C.E.P.R. Discussion Papers.
    14. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    15. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    16. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    17. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
    18. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    19. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
    20. Vogt Gerit, 2007. "Analyse der Prognoseeigenschaften von ifo-Konjunkturindikatoren unter Echtzeitbedingungen / The Forecasting Performance of ifo-indicators Under Real-time Conditions," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 227(1), pages 87-101, February.

    More about this item

    Keywords

    Expectations; Learning algorithms; Forecasting; Learning-to-forecast; Least squares; Stochastic gradient;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:124:y:2014:i:1:p:104-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.