IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Adaptive learning in practice

  • Carceles-Poveda, Eva
  • Giannitsarou, Chryssi

We analyse some practical aspects of implementing adaptive learning in the context of forward-looking linear models. In particular, we focus on how to set initial conditions for three popular algorithms, namely recursive least squares, stochastic gradient and constant gain learning. We propose three ways of initializing, one that uses randomly generated data, a second that is ad-hoc and a third that uses an appropriate distribution. We illustrate, via standard examples, that the behaviour and evolution of macroeconomic variables not only depend on the learning algorithm, but on the initial conditions as well. Furthermore, we provide a computing toolbox for analysing the quantitative properties of dynamic stochastic macroeconomic models under adaptive learning.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 31 (2007)
Issue (Month): 8 (August)
Pages: 2659-2697

in new window

Handle: RePEc:eee:dyncon:v:31:y:2007:i:8:p:2659-2697
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. In-Koo Cho & Noah Williams & Thomas J. Sargent, 2002. "Escaping Nash Inflation," Review of Economic Studies, Oxford University Press, vol. 69(1), pages 1-40.
  2. McCallum, Bennett T., 1983. "On non-uniqueness in rational expectations models : An attempt at perspective," Journal of Monetary Economics, Elsevier, vol. 11(2), pages 139-168.
  3. James B. Bullard & Stefano Eusepi, 2004. "Did the Great Inflation occur despite policymaker commitment to a Taylor rule?," Working Papers 2003-013, Federal Reserve Bank of St. Louis.
  4. Albert Marcet & Juan P. Nicolini, 2003. "Recurrent Hyperinflations and Learning," American Economic Review, American Economic Association, vol. 93(5), pages 1476-1498, December.
  5. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Asset Pricing with Adaptive Learning," CEPR Discussion Papers 6223, C.E.P.R. Discussion Papers.
  6. Athanasios Orphanides & John C. Williams, 2004. "The decline of activist stabilization policy: natural rate misperceptions, learning, and expectations," International Finance Discussion Papers 804, Board of Governors of the Federal Reserve System (U.S.).
  7. Athanasios Orphanides & John C. Williams, 2003. "Inflation scares and forecast-based monetary policy," Working Paper Series 2003-11, Federal Reserve Bank of San Francisco.
  8. William Poole, 2002. "Flation," Speech 49, Federal Reserve Bank of St. Louis.
    • William Poole & Robert H. Rasche, 2002. "Flation," Review, Federal Reserve Bank of St. Louis, issue Nov, pages 1-6.
  9. George W. Evans & Seppo Honkapohja & Noah Williams, 2010. "Generalized Stochastic Gradient Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(1), pages 237-262, 02.
  10. Giannitsarou, Chryssi, 2006. "Supply-side reforms and learning dynamics," Journal of Monetary Economics, Elsevier, vol. 53(2), pages 291-309, March.
  11. Fabio Milani, 2005. "Adaptive Learning and Inflation Persistence," Working Papers 050607, University of California-Irvine, Department of Economics.
  12. McCallum, Bennett T., 2007. "E-stability vis-a-vis determinacy results for a broad class of linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1376-1391, April.
  13. Giannitsarou, Chryssi, 2005. "E-Stability Does Not Imply Learnability," Macroeconomic Dynamics, Cambridge University Press, vol. 9(02), pages 276-287, April.
  14. Campbell, John Y., 1994. "Inspecting the mechanism: An analytical approach to the stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 463-506, June.
  15. Bullard, James & Cho, In-Koo, 2003. "Escapist policy rules," CFS Working Paper Series 2003/38, Center for Financial Studies (CFS).
  16. Milani, Fabio, 2008. "Learning, monetary policy rules, and macroeconomic stability," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3148-3165, October.
  17. Fabio Milani, 2005. "Expectations, Learning and Macroeconomic Persistence," Macroeconomics 0510022, EconWPA.
  18. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
  19. Thomas J. Sargent & Noah Williams & Tao Zha, 2006. "The conquest of South American inflation," FRB Atlanta Working Paper 2006-20, Federal Reserve Bank of Atlanta.
  20. Evans, George W. & Honkapohja, Seppo, 1998. "Convergence of learning algorithms without a projection facility," Journal of Mathematical Economics, Elsevier, vol. 30(1), pages 59-86, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:31:y:2007:i:8:p:2659-2697. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.