IDEAS home Printed from https://ideas.repec.org/p/ore/uoecwp/2005-17.html

Generalized Stochastic Gradient Learning

Author

Listed:
  • George W. Evans

    (University of Oregon Economics Department)

  • Seppo Honkapohja

    (University of Cambridge)

  • Noah Williams

    (Princeton University and NBER)

Abstract

We study the properties of generalized stochastic gradient (GSG) learning in forwardlooking models. We examine how the conditions for stability of standard stochastic gradient (SG) learning both differ from and are related to E-stability, which governs stability under least squares learning. SG algorithms are sensitive to units of measurement and we show that there is a transformation of variables for which E-stability governs SG stability. GSG algorithms with constant gain have a deeper justification in terms of parameter drift, robustness and risk sensitivity.

Suggested Citation

  • George W. Evans & Seppo Honkapohja & Noah Williams, 2005. "Generalized Stochastic Gradient Learning," University of Oregon Economics Department Working Papers 2005-17, University of Oregon Economics Department, revised 18 May 2008.
  • Handle: RePEc:ore:uoecwp:2005-17
    as

    Download full text from publisher

    File URL: http://economics.uoregon.edu/papers/UO-2005-17_Evans_Gradient.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ore:uoecwp:2005-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bill Harbaugh (email available below). General contact details of provider: https://edirc.repec.org/data/deuorus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.