IDEAS home Printed from https://ideas.repec.org/a/bpj/bejmac/v24y2024i1p45-96n8.html
   My bibliography  Save this article

Initial Beliefs Uncertainty

Author

Listed:
  • Galimberti Jaqueson K.

    (Asian Development Bank, 6 ADB Avenue, 1550 Mandaluyong, Metro Manila, Phillipines)

Abstract

This paper evaluates how initial beliefs uncertainty can affect data weighting and the estimation of models with adaptive learning. One key finding is that misspecification of initial beliefs uncertainty, particularly with the common approach of artificially inflating initials uncertainty to accelerate convergence of estimates, generates time-varying profiles of weights given to past observations in what should otherwise follow a fixed profile of decaying weights. The effect of this misspecification, denoted as diffuse initials, is shown to distort the estimation and interpretation of learning in finite samples. Simulations of a forward-looking Phillips curve model indicate that (i) diffuse initials lead to downward biased estimates of expectations relevance in the determination of actual inflation, and (ii) these biases spill over to estimates of inflation responsiveness to output gaps. An empirical application with U.S. data shows the relevance of these effects for the determination of expectational stability over decadal subsamples of data. The use of diffuse initials is also found to lead to downward biased estimates of learning gains, both estimated from an aggregate representative model and estimated to match individual expectations from survey expectations data.

Suggested Citation

  • Galimberti Jaqueson K., 2024. "Initial Beliefs Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 24(1), pages 45-96, January.
  • Handle: RePEc:bpj:bejmac:v:24:y:2024:i:1:p:45-96:n:8
    DOI: 10.1515/bejm-2023-0069
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/bejm-2023-0069
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/bejm-2023-0069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.

    More about this item

    Keywords

    expectations; adaptive learning; bounded rationality; macroeconomics;
    All these keywords.

    JEL classification:

    • E70 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - General
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:bejmac:v:24:y:2024:i:1:p:45-96:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.