IDEAS home Printed from https://ideas.repec.org/p/kof/wpskof/17-425.html
   My bibliography  Save this paper

Smoothing-based Initialization for Learning-to-Forecast Algorithms

Author

Abstract

Under adaptive learning,recursive algorithms are proposed to represent how agents update their beliefs over time. For applied purposes these algorithms require initial estimates of agents perceived law of motion. Obtaining appropriate initial estimates can become prohibitive within the usual data availability restrictions of macroeconomics. To circumvent this issue we propose a new smoothing-based initialization routine that optimizes the use of a training sample of data to obtain initials consistent with the statistical properties of the learning algorithm. Our method is generically formulated to cover different specifications of the learning mechanism, such as the Least Squares and the Stochastic Gradient algorithms. Using simulations we show that our method is able to speed up the convergence of initial estimates in exchange for a higher computational cost.

Suggested Citation

  • Michele Berardi & Jaqueson K Galimberti, 2017. "Smoothing-based Initialization for Learning-to-Forecast Algorithms," KOF Working papers 17-425, KOF Swiss Economic Institute, ETH Zurich.
  • Handle: RePEc:kof:wpskof:17-425
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.3929/ethz-a-010820132
    Download Restriction: no

    References listed on IDEAS

    as
    1. Slobodyan, Sergey & Wouters, Raf, 2012. "Learning in an estimated medium-scale DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 26-46.
    2. repec:eee:dyncon:v:78:y:2017:i:c:p:26-53 is not listed on IDEAS
    3. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
    4. Stefano Eusepi & Bruce Preston, 2011. "Expectations, Learning, and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 101(6), pages 2844-2872, October.
    5. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
    6. Orphanides, Athanasios & Williams, John C., 2005. "The decline of activist stabilization policy: Natural rate misperceptions, learning, and expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1927-1950, November.
    7. Bray, Margaret, 1982. "Learning, estimation, and the stability of rational expectations," Journal of Economic Theory, Elsevier, vol. 26(2), pages 318-339, April.
    8. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
    9. Chevillon, Guillaume & Massmann, Michael & Mavroeidis, Sophocles, 2010. "Inference in models with adaptive learning," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 341-351, April.
    10. George W. Evans & Seppo Honkapohja & Noah Williams, 2010. "Generalized Stochastic Gradient Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(1), pages 237-262, February.
    11. Evans, George W. & Honkapohja, S., 1998. "Stochastic gradient learning in the cobweb model," Economics Letters, Elsevier, vol. 61(3), pages 333-337, December.
    12. McGough, Bruce, 2003. "Statistical Learning With Time-Varying Parameters," Macroeconomic Dynamics, Cambridge University Press, vol. 7(01), pages 119-139, February.
    13. Fabio Milani, 2011. "Expectation Shocks and Learning as Drivers of the Business Cycle," Economic Journal, Royal Economic Society, vol. 121(552), pages 379-401, May.
    14. Christev, Atanas & Slobodyan, Sergey, 2014. "Learnability Of Eā€“Stable Equilibria," Macroeconomic Dynamics, Cambridge University Press, vol. 18(05), pages 959-984, July.
    15. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
    16. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine," Centre for Growth and Business Cycle Research Discussion Paper Series 175, Economics, The Univeristy of Manchester.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kof:wpskof:17-425. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/koethch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.