IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/94023.html
   My bibliography  Save this paper

A probabilistic interpretation of the constant gain algorithm

Author

Listed:
  • Berardi, Michele

Abstract

This paper proposes a novel interpretation of the constant gain learning algorithm through a probabilistic setting with Bayesian updating. Such framework allows to understand the gain coefficient in terms of the probability of changes in the estimated quantity.

Suggested Citation

  • Berardi, Michele, 2019. "A probabilistic interpretation of the constant gain algorithm," MPRA Paper 94023, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:94023
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/94023/1/MPRA_paper_94023.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
    2. Stefano Eusepi & Bruce Preston, 2011. "Expectations, Learning, and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 101(6), pages 2844-2872, October.
    3. Thomas Sargent & Noah Williams & Tao Zha, 2006. "Shocks and Government Beliefs: The Rise and Fall of American Inflation," American Economic Review, American Economic Association, vol. 96(4), pages 1193-1224, September.
    4. Fabio Milani, 2011. "Expectation Shocks and Learning as Drivers of the Business Cycle," Economic Journal, Royal Economic Society, vol. 121(552), pages 379-401, May.
    5. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Berardi, 2020. "A probabilistic interpretation of the constant gain learning algorithm," Bulletin of Economic Research, Wiley Blackwell, vol. 72(4), pages 393-403, October.
    2. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    3. Michele Berardi, 2016. "Herding through learning in an asset pricing model," Centre for Growth and Business Cycle Research Discussion Paper Series 223, Economics, The University of Manchester.
    4. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
    5. Michele Berardi, 2018. "Information aggregation and learning in a dynamic asset pricing model," Centre for Growth and Business Cycle Research Discussion Paper Series 241, Economics, The University of Manchester.
    6. Jaqueson K. Galimberti, 2020. "Information weighting under least squares learning," CAMA Working Papers 2020-46, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    8. Eusepi, Stefano & Giannoni, Marc P. & Preston, Bruce, 2018. "Some implications of learning for price stability," European Economic Review, Elsevier, vol. 106(C), pages 1-20.
    9. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    10. Schaefer, Daniel & Singleton, Carl, 2018. "Unemployment and econometric learning," Research in Economics, Elsevier, vol. 72(2), pages 277-296.
    11. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine," Centre for Growth and Business Cycle Research Discussion Paper Series 175, Economics, The University of Manchester.
    12. Michele Berardi, 2015. "Prices, fundamental values and learning," Centre for Growth and Business Cycle Research Discussion Paper Series 214, Economics, The University of Manchester.
    13. Berardi, Michele & Galimberti, Jaqueson K., 2019. "Smoothing-Based Initialization For Learning-To-Forecast Algorithms," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1008-1023, April.
    14. Koursaros, Demetris, 2019. "Learning expectations using multi-period forecasts," Journal of Economics and Business, Elsevier, vol. 102(C), pages 1-25.
    15. Kobielarz, Michal, 2018. "The economics of monetary unions," Other publications TiSEM b0293536-68ec-4905-bffd-6, Tilburg University, School of Economics and Management.
    16. Aguilar, Pablo & Vázquez, Jesús, 2021. "An Estimated Dsge Model With Learning Based On Term Structure Information," Macroeconomic Dynamics, Cambridge University Press, vol. 25(7), pages 1635-1665, October.
    17. Pei Kuang, 2013. "Imperfect Knowledge about Asset Prices and Credit Cycles," CDMA Working Paper Series 201303, Centre for Dynamic Macroeconomic Analysis.
    18. Milani, Fabio, 2017. "Sentiment and the U.S. business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 289-311.
    19. Ali, Syed Zahid & Anwar, Sajid, 2017. "Exchange rate pass through, cost channel to monetary policy transmission, adaptive learning, and the price puzzle," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 69-82.
    20. Miura, Shogo, 2023. "Households’ assets, sentiment shocks and business cycles," Economic Modelling, Elsevier, vol. 118(C).

    More about this item

    Keywords

    Bayesian learning; adaptive learning; constant gain.;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:94023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.