IDEAS home Printed from https://ideas.repec.org/p/cer/papers/wp766.html
   My bibliography  Save this paper

Professional Survey Forecasts and Expectations in DSGE Models

Author

Listed:
  • Yuliya Rychalovska
  • Sergey Slobodyan
  • Rafael Wouters

Abstract

In this paper, we demonstrate the usefulness of survey data for macroeconomic analysis and propose a strategy to integrate and ec ciently utilize information from surveys in the DSGE setup. We extend the set of observable variables to include the data on consumption, investment, output, and ináation expectations, as measured by the Survey of Professional Forecasters (SPF). By doing so, we aim to discipline the dynamics of model-based expectations and evaluate alternative belief models. Our approach to exploit the timely information from surveys is based on re-speciÖcation of structural shocks into persistent and transitory components. Due to the SPF, we are able to improve identiÖcation of fundamental shocks and predictive power of the model by separating the sources of low and high frequency volatility. Furthermore, we show that models with an imperfectly-rational expectation formation mechanism based on Adaptive Learning (AL) can reduce important limitations implied by the Rational Expectation (RE) hypothesis. More speciÖcally, our models based on belief updating can better capture macroeconomic trend shifts and, as a result, achieve superior long-term predictions. In addition, the AL mechanism can produce realistic time variation in the transmission of shocks and perceived macro-economic volatility, which allows the model to better explain the investment dynamics. Finally, AL models, which relax the RE constraint of internal consistency between the agentsíand model forecasts, can reproduce the main features of agentsí predictions in line with SPF evidence and, at the same time, can generate improved model forecasts, thus diminishing possible inec ciencies present in surveys.

Suggested Citation

  • Yuliya Rychalovska & Sergey Slobodyan & Rafael Wouters, 2023. "Professional Survey Forecasts and Expectations in DSGE Models," CERGE-EI Working Papers wp766, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  • Handle: RePEc:cer:papers:wp766
    as

    Download full text from publisher

    File URL: http://www.cerge-ei.cz/pdf/wp/Wp766.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bauer, Michael D. & Pflueger, Carolin E. & Sunderam, Adi, 2022. "Perceptions about monetary policy," IMFS Working Paper Series 176, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    2. Calvert Jump, Robert & Hommes, Cars & Levine, Paul, 2019. "Learning, heterogeneity, and complexity in the New Keynesian model," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 446-470.
    3. Stefano Eusepi & Bruce Preston, 2011. "Expectations, Learning, and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 101(6), pages 2844-2872, October.
    4. Crump, Richard K. & Eusepi, Stefano & Tambalotti, Andrea & Topa, Giorgio, 2022. "Subjective intertemporal substitution," Journal of Monetary Economics, Elsevier, vol. 126(C), pages 118-133.
    5. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    6. George-Marios Angeletos & Zhen Huo & Karthik A. Sastry, 2021. "Imperfect Macroeconomic Expectations: Evidence and Theory," NBER Macroeconomics Annual, University of Chicago Press, vol. 35(1), pages 1-86.
    7. Martin S Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2021. "The Macroeconomics of Epidemics [Economic activity and the spread of viral diseases: Evidence from high frequency data]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5149-5187.
    8. Marcin Kolasa & MichaŁ Rubaszek & PaweŁ SkrzypczyŃski, 2012. "Putting the New Keynesian DSGE Model to the Real-Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    9. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    10. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    11. Sergey Slobodyan & Raf Wouters, 2012. "Learning in a Medium-Scale DSGE Model with Expectations Based on Small Forecasting Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 65-101, April.
    12. Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
    13. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    14. Orphanides, Athanasios, 2004. "Monetary Policy Rules, Macroeconomic Stability, and Inflation: A View from the Trenches," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 151-175, April.
    15. Fabio Milani, 2011. "Expectation Shocks and Learning as Drivers of the Business Cycle," Economic Journal, Royal Economic Society, vol. 121(552), pages 379-401, May.
    16. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    17. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    18. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    19. George W. Evans, 2001. "Expectations in Macroeconomics. Adaptive versus Eductive Learning," Revue Économique, Programme National Persée, vol. 52(3), pages 573-582.
    20. Veronica Guerrieri & Guido Lorenzoni & Ludwig Straub & Iván Werning, 2022. "Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?," American Economic Review, American Economic Association, vol. 112(5), pages 1437-1474, May.
    21. Milani, Fabio, 2017. "Sentiment and the U.S. business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 289-311.
    22. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    23. George W. Evans & Seppo Honkapohja, 2009. "Learning and Macroeconomics," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 421-451, May.
    24. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    25. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    26. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    27. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    28. Hajdini, Ina & Kurmann, Andre, 2022. "Predictable Forecast Errors in Full-Information Rational Expectations Models with Regime Shifts," School of Economics Working Paper Series 2022-5, LeBow College of Business, Drexel University.
    29. Michael Woodford, 2013. "Macroeconomic Analysis Without the Rational Expectations Hypothesis," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 303-346, May.
    30. Fernando Alvarez & David Argente & Francesco Lippi, 2021. "A Simple Planning Problem for COVID-19 Lock-down, Testing, and Tracing," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 367-382, September.
    31. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    32. Faria-e-Castro, Miguel, 2021. "Fiscal policy during a pandemic," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    33. Jeffrey C. Fuhrer, 2015. "Expectations as a source of macroeconomic persistence: an exploration of firms' and households' expectation formation," Working Papers 15-5, Federal Reserve Bank of Boston.
    34. Smets, Frank & Warne, Anders & Wouters, Rafael, 2014. "Professional forecasters and real-time forecasting with a DSGE model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 981-995.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    2. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    3. Ciccarelli, Matteo & Darracq Pariès, Matthieu & Priftis, Romanos & Angelini, Elena & Bańbura, Marta & Bokan, Nikola & Fagan, Gabriel & Gumiel, José Emilio & Kornprobst, Antoine & Lalik, Magdalena & Mo, 2024. "ECB macroeconometric models for forecasting and policy analysis," Occasional Paper Series 344, European Central Bank.
    4. Jean-Paul L'Huillier & Sanjay R. Singh & Donghoon Yoo, 2021. "Incorporating Diagnostic Expectations into the New Keynesian Framework," Working Papers 339, University of California, Davis, Department of Economics.
    5. Gáti, Laura, 2023. "Monetary policy & anchored expectations—An endogenous gain learning model," Journal of Monetary Economics, Elsevier, vol. 140(S), pages 37-47.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Peter Andrebriq & Carlo Pizzinelli & Christopher Roth & Johannes Wohlfart, 2022. "Subjective Models of the Macroeconomy: Evidence From Experts and Representative Samples," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 2958-2991.
    8. George W. Evans & Seppo Honkapohja & Kaushik Mitra, 2022. "Expectations, Stagnation, And Fiscal Policy: A Nonlinear Analysis," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1397-1425, August.
    9. Miura, Shogo, 2023. "Households’ assets, sentiment shocks and business cycles," Economic Modelling, Elsevier, vol. 118(C).
    10. Yuliya Rychalovska & Sergey Slobodyan & Raf Wouters, 2024. "Survey Expectations, Adaptive Learning and Inflation Dynamics," CERGE-EI Working Papers wp781, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    11. Greta Meggiorini & Fabio Milani, 2021. "Behavioral New Keynesian Models: Learning vs. Cognitive Discounting," CESifo Working Paper Series 9039, CESifo.
    12. Xavier Gabaix, 2020. "A Behavioral New Keynesian Model," American Economic Review, American Economic Association, vol. 110(8), pages 2271-2327, August.
    13. Poledna, Sebastian & Miess, Michael Gregor & Hommes, Cars & Rabitsch, Katrin, 2023. "Economic forecasting with an agent-based model," European Economic Review, Elsevier, vol. 151(C).
    14. Zhao Han & Xiaohan Ma & Ruoyun Mao, 2023. "The Role of Dispersed Information in Inflation and Inflation Expectations," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 48, pages 72-106, April.
    15. Hagenhoff, Tim & Lustenhouwer, Joep, 2023. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    16. Benhabib, Jess & Evans, George W. & Honkapohja, Seppo, 2014. "Liquidity traps and expectation dynamics: Fiscal stimulus or fiscal austerity?," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 220-238.
    17. Fabio Milani, 2012. "The Modeling of Expectations in Empirical DSGE Models: A Survey," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 3-38, Emerald Group Publishing Limited.
    18. Beqiraj Elton & Di Bartolomeo Giovanni & Serpieri Carolina, 2017. "Bounded-rationality and heterogeneous agents: Long or short forecasters?," wp.comunite 00132, Department of Communication, University of Teramo.
    19. Ina Hajdini, 2022. "Mis-specified Forecasts and Myopia in an Estimated New Keynesian Model," Working Papers 22-03R, Federal Reserve Bank of Cleveland, revised 06 Mar 2023.
    20. Pablo Aguilar & Jesús Vázquez, 2015. "The role of term structure in an estimated DSGE model with learning," LIDAM Discussion Papers IRES 2015007, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).

    More about this item

    Keywords

    Expectations; Survey data; Adaptive Learning; DSGE models;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cer:papers:wp766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Vasiljevova (email available below). General contact details of provider: https://edirc.repec.org/data/eiacacz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.