IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i5p1070-1089.html
   My bibliography  Save this article

Corrected version of AIC for selecting multivariate normal linear regression models in a general nonnormal case

Author

Listed:
  • Yanagihara, Hirokazu

Abstract

This paper deals with the bias reduction of Akaike information criterion (AIC) for selecting variables in multivariate normal linear regression models when the true distribution of observation is an unknown nonnormal distribution. We propose a corrected version of AIC which is partially constructed by the jackknife method and is adjusted to the exact unbiased estimator of the risk when the candidate model includes the true model. It is pointed out that the influence of nonnormality in the bias of our criterion is smaller than the ones in AIC and TIC. We verify that our criterion is better than the AIC, TIC and EIC by conducting numerical experiments.

Suggested Citation

  • Yanagihara, Hirokazu, 2006. "Corrected version of AIC for selecting multivariate normal linear regression models in a general nonnormal case," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1070-1089, May.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:5:p:1070-1089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00098-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yasunori Fujikoshi & Takafumi Noguchi & Megu Ohtaki & Hirokazu Yanagihara, 2003. "Corrected versions of cross-validation criteria for selecting multivariate regression and growth curve models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 537-553, September.
    2. Makio Ishiguro & Yosiyuki Sakamoto & Genshiro Kitagawa, 1997. "Bootstrapping Log Likelihood and EIC, an Extension of AIC," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 411-434, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017. "A vector heterogeneous autoregressive index model for realized volatility measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
    2. Yanagihara, Hirokazu & Tonda, Tetsuji & Matsumoto, Chieko, 2006. "Bias correction of cross-validation criterion based on Kullback-Leibler information under a general condition," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 1965-1975, October.
    3. Christopher Withers & Saralees Nadarajah, 2013. "Calibration with low bias," Statistical Papers, Springer, vol. 54(2), pages 371-379, May.
    4. Withers, Christopher S. & Nadarajah, Saralees, 2011. "Estimates of low bias for the multivariate normal," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1635-1647, November.
    5. Cubadda, Gianluca & Hecq, Alain & Telg, Sean, 2017. "Detecting Co-Movements in Noncausal Time Series," MPRA Paper 77254, University Library of Munich, Germany, revised 02 Mar 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:5:p:1070-1089. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.