IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v64y2012i6p1161-1186.html
   My bibliography  Save this article

Resampling-based information criteria for best-subset regression

Author

Listed:
  • Philip Reiss
  • Lei Huang
  • Joseph Cavanaugh
  • Amy Roy

Abstract

When a linear model is chosen by searching for the best subset among a set of candidate predictors, a fixed penalty such as that imposed by the Akaike information criterion may penalize model complexity inadequately, leading to biased model selection. We study resampling-based information criteria that aim to overcome this problem through improved estimation of the effective model dimension. The first proposed approach builds upon previous work on bootstrap-based model selection. We then propose a more novel approach based on cross-validation. Simulations and analyses of a functional neuroimaging data set illustrate the strong performance of our resampling-based methods, which are implemented in a new R package. Copyright The Institute of Statistical Mathematics, Tokyo 2012

Suggested Citation

  • Philip Reiss & Lei Huang & Joseph Cavanaugh & Amy Roy, 2012. "Resampling-based information criteria for best-subset regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1161-1186, December.
  • Handle: RePEc:spr:aistmt:v:64:y:2012:i:6:p:1161-1186
    DOI: 10.1007/s10463-012-0353-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-012-0353-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-012-0353-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    2. Makio Ishiguro & Yosiyuki Sakamoto & Genshiro Kitagawa, 1997. "Bootstrapping Log Likelihood and EIC, an Extension of AIC," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 411-434, September.
    3. Bradley Efron, 2004. "The Estimation of Prediction Error: Covariance Penalties and Cross-Validation," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 619-632, January.
    4. Robert Tibshirani & Keith Knight, 1999. "The Covariance Inflation Criterion for Adaptive Model Selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 529-546.
    5. Jan R. Magnus, 1986. "The Exact Moments of a Ratio of Quadratic Forms in Normal Variables," Annals of Economics and Statistics, GENES, issue 4, pages 95-109.
    6. Jan R. Magnus, 1986. "The Exact Moments of a Ratio of Quadratic Forms in Normal Variables," Annals of Economics and Statistics, GENES, issue 4, pages 95-109.
    7. repec:adr:anecst:y:1986:i:4:p:05 is not listed on IDEAS
    8. Shen X. & Ye J., 2002. "Adaptive Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 210-221, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bo & Shen, Xiaotong & Mumford, Sunni L., 2012. "Generalized degrees of freedom and adaptive model selection in linear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 574-586.
    2. F. Javier Mencía & Enrique Sentana, 2004. "Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations," Working Papers wp2004_0411, CEMFI.
    3. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    4. Kan, Raymond, 2008. "From moments of sum to moments of product," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 542-554, March.
    5. Magnus, J.R. & Pesaran, B., 1990. "Evaluation Of Moment Of Quadratic Forms In Normal Variables," Papers 9021, Tilburg - Center for Economic Research.
    6. Valérie Mignon & Christophe Hurlin, 2005. "Une synthèse des tests de racine unitaire sur données de panel," Économie et Prévision, Programme National Persée, vol. 169(3), pages 253-294.
    7. Ahamada Ibrahim & Boutahar Mohamed, 2012. "Power of the KPSS test against shift in variance: a further investigation," Economics Bulletin, AccessEcon, vol. 32(1), pages 854-865.
    8. Vasnev, Andrey L., 2010. "Sensitivity of GLS estimators in random effects models," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1252-1262, May.
    9. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    10. Chen, Ye & Yu, Jun, 2015. "Optimal jackknife for unit root models," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 135-142.
    11. Giessing, Alexander & He, Xuming, 2019. "On the predictive risk in misspecified quantile regression," Journal of Econometrics, Elsevier, vol. 213(1), pages 235-260.
    12. Javier Mencía & Enrique Sentana, 2012. "Distributional Tests in Multivariate Dynamic Models with Normal and Student-t Innovations," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 133-152, February.
    13. Daudin, Jean-Jacques & Mary-Huard, Tristan, 2008. "Estimation of the conditional risk in classification: The swapping method," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3220-3232, February.
    14. van Garderen, Kees Jan & Peter Boswijk, H., 2014. "Bias correcting adjustment coefficients in a cointegrated VAR with known cointegrating vectors," Economics Letters, Elsevier, vol. 122(2), pages 224-228.
    15. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    16. Yi, Feng & Zou, Hui, 2013. "SURE-tuned tapering estimation of large covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 339-351.
    17. van der Genugten, B.B., 1992. "Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables," Research Memorandum FEW 564, Tilburg University, School of Economics and Management.
    18. Paolella, Marc S., 2003. "Computing moments of ratios of quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 313-331, March.
    19. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    20. Kan, Raymond & Wang, Xiaolu, 2010. "On the distribution of the sample autocorrelation coefficients," Journal of Econometrics, Elsevier, vol. 154(2), pages 101-121, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:64:y:2012:i:6:p:1161-1186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.