IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1119-1132.html
   My bibliography  Save this article

Domain selection and familywise error rate for functional data: A unified framework

Author

Listed:
  • Konrad Abramowicz
  • Alessia Pini
  • Lina Schelin
  • Sara Sjöstedt de Luna
  • Aymeric Stamm
  • Simone Vantini

Abstract

Functional data are smooth, often continuous, random curves, which can be seen as an extreme case of multivariate data with infinite dimensionality. Just as componentwise inference for multivariate data naturally performs feature selection, subsetwise inference for functional data performs domain selection. In this paper, we present a unified testing framework for domain selection on populations of functional data. In detail, p‐values of hypothesis tests performed on pointwise evaluations of functional data are suitably adjusted for providing control of the familywise error rate (FWER) over a family of subsets of the domain. We show that several state‐of‐the‐art domain selection methods fit within this framework and differ from each other by the choice of the family over which the control of the FWER is provided. In the existing literature, these families are always defined a priori. In this work, we also propose a novel approach, coined thresholdwise testing, in which the family of subsets is instead built in a data‐driven fashion. The method seamlessly generalizes to multidimensional domains in contrast to methods based on a priori defined families. We provide theoretical results with respect to consistency and control of the FWER for the methods within the unified framework. We illustrate the performance of the methods within the unified framework on simulated and real data examples and compare their performance with other existing methods.

Suggested Citation

  • Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1119-1132
    DOI: 10.1111/biom.13669
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13669
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lasitha N. Rathnayake & Pankaj K. Choudhary, 2016. "Tolerance bands for functional data," Biometrics, The International Biometric Society, vol. 72(2), pages 503-512, June.
    2. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    3. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    4. Dennis D. Cox & Jong Soo Lee, 2008. "Pointwise testing with functional data using the Westfall--Young randomization method," Biometrika, Biometrika Trust, vol. 95(3), pages 621-634.
    5. Livio Corain & Viatcheslav Melas & Andrey Pepelyshev & Luigi Salmaso, 2014. "New insights on permutation approach for hypothesis testing on functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 339-356, September.
    6. A. Pini & S. Vantini, 2017. "Interval-wise testing for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 407-424, April.
    7. M. Perone Pacifico & C. Genovese & I. Verdinelli & L. Wasserman, 2004. "False Discovery Control for Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1002-1014, December.
    8. Konrad Abramowicz & Charlotte K. Häger & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Simone Vantini, 2018. "Nonparametric inference for functional‐on‐scalar linear models applied to knee kinematic hop data after injury of the anterior cruciate ligament," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(4), pages 1036-1061, December.
    9. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    10. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    2. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    3. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    4. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    5. Veronika Římalová & Alessandra Menafoglio & Alessia Pini & Vilém Pechanec & Eva Fišerová, 2020. "A permutation approach to the analysis of spatiotemporal geochemical data in the presence of heteroscedasticity," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    6. A. Pini & S. Vantini, 2017. "Interval-wise testing for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 407-424, April.
    7. Todd Colin Pataky & Konrad Abramowicz & Dominik Liebl & Alessia Pini & Sara Sjöstedt Luna & Lina Schelin, 2023. "Simultaneous inference for functional data in sports biomechanics," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 369-392, March.
    8. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    9. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Jan 2024.
    10. Agostino Torti & Alessia Pini & Simone Vantini, 2021. "Modelling time‐varying mobility flows using function‐on‐function regression: Analysis of a bike sharing system in the city of Milan," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 226-247, January.
    11. Gina-Maria Pomann & Ana-Maria Staicu & Sujit Ghosh, 2016. "A two-sample distribution-free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 395-414, April.
    12. Římalová, Veronika & Fišerová, Eva & Menafoglio, Alessandra & Pini, Alessia, 2022. "Inference for spatial regression models with functional response using a permutational approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    14. Philip T. Reiss & Lei Huang & Pei‐Shien Wu & Huaihou Chen & Stan Colcombe, 2017. "Pointwise influence matrices for functional‐response regression," Biometrics, The International Biometric Society, vol. 73(4), pages 1092-1101, December.
    15. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    16. Zhang, Xiaoke & Zhong, Qixian & Wang, Jane-Ling, 2020. "A new approach to varying-coefficient additive models with longitudinal covariates," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    17. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    18. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    19. Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
    20. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1119-1132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.