IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v157y2021ics0167947320302516.html
   My bibliography  Save this article

Two-sample tests for multivariate functional data with applications

Author

Listed:
  • Qiu, Zhiping
  • Chen, Jianwei
  • Zhang, Jin-Ting

Abstract

Multivariate functional data are frequently obtained in many scientific or industrial areas where several functions for a statistical unit are observed over time. It is often interesting to check if the mean vector functions of two multivariate functional samples are equal. To address this important issue, two global tests for the above two-sample problem for multivariate functional data are proposed and studied. Their asymptotic random expressions under the null and certain local alternative hypotheses are derived and their root-n consistencies are established. Simulation studies show that the proposed two tests generally have higher or not worse powers than some existing competitors. A real data application illustrates the proposed tests.

Suggested Citation

  • Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302516
    DOI: 10.1016/j.csda.2020.107160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320302516
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin-Ting Zhang & Xuehua Liang, 2014. "One-Way anova for Functional Data via Globalizing the Pointwise F-test," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 51-71, March.
    2. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    3. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.
    4. Gerda Claeskens & Mia Hubert & Leen Slaets & Kaveh Vakili, 2014. "Multivariate Functional Halfspace Depth," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 411-423, March.
    5. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    6. Zhang, Jin-Ting & Cheng, Ming-Yen & Wu, Hau-Tieng & Zhou, Bu, 2019. "A new test for functional one-way ANOVA with applications to ischemic heart screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 3-17.
    7. Manuel Febrero-Bande & Wenceslao González-Manteiga, 2013. "Generalized additive models for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 278-292, June.
    8. Raymond K. W. Wong & Yehua Li & Zhengyuan Zhu, 2019. "Partially Linear Functional Additive Models for Multivariate Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 406-418, January.
    9. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    10. Boente, Graciela & Salibián Barrera, Matías & Tyler, David E., 2014. "A characterization of elliptical distributions and some optimality properties of principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 254-264.
    11. Dennis D. Cox & Jong Soo Lee, 2008. "Pointwise testing with functional data using the Westfall--Young randomization method," Biometrika, Biometrika Trust, vol. 95(3), pages 621-634.
    12. Spitzner D.J. & Marron J.S. & Essick G.K., 2003. "Mixed-Model Functional ANOVA for Studying Human Tactile Perception," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 263-272, January.
    13. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Rejoinder to ‘multivariate functional outlier detection’," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 269-277, July.
    14. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    15. Jaromir Antoch & Lubos Prchal & Maria Rosaria De Rosa & Pascal Sarda, 2010. "Electricity consumption prediction with functional linear regression using spline estimators," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2027-2041.
    16. Lajos Horváth & Piotr Kokoszka & Ron Reeder, 2013. "Estimation of the mean of functional time series and a two-sample problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 103-122, January.
    17. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
    18. Livio Corain & Viatcheslav Melas & Andrey Pepelyshev & Luigi Salmaso, 2014. "New insights on permutation approach for hypothesis testing on functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 339-356, September.
    19. Tomasz Górecki & Mirosław Krzyśko & Łukasz Waszak & Waldemar Wołyński, 2018. "Selected statistical methods of data analysis for multivariate functional data," Statistical Papers, Springer, vol. 59(1), pages 153-182, March.
    20. Shuichi Tokushige & Hiroshi Yadohisa & Koichi Inada, 2007. "Crisp and fuzzy k-means clustering algorithms for multivariate functional data," Computational Statistics, Springer, vol. 22(1), pages 1-16, April.
    21. Alessia Pini & Simone Vantini, 2016. "The interval testing procedure: A general framework for inference in functional data analysis," Biometrics, The International Biometric Society, vol. 72(3), pages 835-845, September.
    22. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    23. Jia Guo & Bu Zhou & Jin-Ting Zhang, 2019. "New Tests for Equality of Several Covariance Functions for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1251-1263, July.
    24. Hervé Cardot & Luboš Prchal & Pascal Sarda, 2007. "No effect and lack-of-fit permutation tests for functional regression," Computational Statistics, Springer, vol. 22(3), pages 371-390, September.
    25. Istem Koymen Keser & Ipek Deveci Kocako�, 2015. "Smoothed functional canonical correlation analysis of humidity and temperature data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2126-2140, October.
    26. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    27. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    28. Fremdt, Stefan & Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef G., 2014. "Functional data analysis with increasing number of projections," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 313-332.
    29. J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
    30. Peter Hall, 2002. "Permutation tests for equality of distributions in high-dimensional settings," Biometrika, Biometrika Trust, vol. 89(2), pages 359-374, June.
    31. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
    32. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristhian Leonardo Urbano-Leon & Manuel Escabias, 2022. "Comparison of Positivity in Two Epidemic Waves of COVID-19 in Colombia with FDA," Stats, MDPI, vol. 5(4), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    2. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    3. Zhu, Tianming & Zhang, Jin-Ting & Cheng, Ming-Yen, 2022. "One-way MANOVA for functional data via Lawley–Hotelling trace test," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    5. A. Pini & S. Vantini, 2017. "Interval-wise testing for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 407-424, April.
    6. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    7. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    8. Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    9. Łukasz Smaga & Hidetoshi Matsui, 2018. "A note on variable selection in functional regression via random subspace method," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 455-477, August.
    10. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    11. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    12. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    13. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    14. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    15. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Rafael Meléndez & Ramón Giraldo & Víctor Leiva, 2020. "Sign, Wilcoxon and Mann-Whitney Tests for Functional Data: An Approach Based on Random Projections," Mathematics, MDPI, vol. 9(1), pages 1-11, December.
    17. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    18. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    19. Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    20. Kuhnt, Sonja & Rehage, André, 2016. "An angle-based multivariate functional pseudo-depth for shape outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 325-340.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.