IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i4d10.1007_s00362-025-01698-7.html
   My bibliography  Save this article

The general linear hypothesis testing problem for multivariate functional data with applications

Author

Listed:
  • Tianming Zhu

    (Nanyang Technological University)

Abstract

As technology continues to advance at a rapid pace, the prevalence of multivariate functional data (MFD) has expanded across diverse disciplines, spanning biology, climatology, finance, and numerous other fields of study. Although MFD are encountered in various fields, the development of methods for hypotheses on mean functions, especially the general linear hypothesis testing (GLHT) problem for such data has been limited. In this study, we propose and study a new global test for the GLHT problem for MFD, which includes the one-way multivariate analysis of variance for functional data (FMANOVA), post hoc, and contrast analysis as special cases. The asymptotic null distribution of the test statistic is shown to be a chi-squared-type mixture dependent of eigenvalues of the heteroscedastic covariance functions. The distribution of the chi-squared-type mixture can be well approximated by a three-cumulant matched chi-squared-approximation with its approximation parameters estimated from the data. By incorporating an adjustment coefficient, the proposed test performs effectively irrespective of the correlation structure in the functional data, even when dealing with a relatively small sample size. Additionally, the asymptotic power of the proposed test under a local alternative is established. Simulation studies and a real data example demonstrate finite-sample performance and broad applicability of the proposed test.

Suggested Citation

  • Tianming Zhu, 2025. "The general linear hypothesis testing problem for multivariate functional data with applications," Statistical Papers, Springer, vol. 66(4), pages 1-32, June.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01698-7
    DOI: 10.1007/s00362-025-01698-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01698-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01698-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin-Ting Zhang & Xuehua Liang, 2014. "One-Way anova for Functional Data via Globalizing the Pointwise F-test," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 51-71, March.
    2. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Zhang, Jin-Ting & Cheng, Ming-Yen & Wu, Hau-Tieng & Zhou, Bu, 2019. "A new test for functional one-way ANOVA with applications to ischemic heart screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 3-17.
    4. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    5. Tianming Zhu & Jin-Ting Zhang, 2022. "Linear hypothesis testing in high-dimensional one-way MANOVA: a new normal reference approach," Computational Statistics, Springer, vol. 37(1), pages 1-27, March.
    6. Liang Zhang & Tianming Zhu & Jin-Ting Zhang, 2023. "Two-sample Behrens–Fisher problems for high-dimensional data: a normal reference scale-invariant test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 50(3), pages 456-476, February.
    7. Srivastava, Muni S. & Du, Meng, 2008. "A test for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 386-402, March.
    8. Li, Jun, 2023. "Finite sample t-tests for high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    9. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    10. Tomasz Górecki & Mirosław Krzyśko & Łukasz Waszak & Waldemar Wołyński, 2018. "Selected statistical methods of data analysis for multivariate functional data," Statistical Papers, Springer, vol. 59(1), pages 153-182, March.
    11. Zhu, Tianming & Zhang, Jin-Ting & Cheng, Ming-Yen, 2022. "One-way MANOVA for functional data via Lawley–Hotelling trace test," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    12. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    13. Jin-Ting Zhang, 2005. "Approximate and Asymptotic Distributions of Chi-Squared-Type Mixtures With Applications," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 273-285, March.
    14. Jianghao Li & Shizhe Hong & Zhenzhen Niu & Zhidong Bai, 2025. "Test for high-dimensional linear hypothesis of mean vectors via random integration," Statistical Papers, Springer, vol. 66(1), pages 1-34, January.
    15. J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    4. Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Rafael Meléndez & Ramón Giraldo & Víctor Leiva, 2020. "Sign, Wilcoxon and Mann-Whitney Tests for Functional Data: An Approach Based on Random Projections," Mathematics, MDPI, vol. 9(1), pages 1-11, December.
    7. Jianghao Li & Shizhe Hong & Zhenzhen Niu & Zhidong Bai, 2025. "Test for high-dimensional linear hypothesis of mean vectors via random integration," Statistical Papers, Springer, vol. 66(1), pages 1-34, January.
    8. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    9. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    10. Caizhu Huang & Xia Cui & Euloge Clovis Kenne Pagui, 2024. "Two-sample mean vector projection test in high-dimensional data," Computational Statistics, Springer, vol. 39(3), pages 1061-1091, May.
    11. Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    12. Huang, Wei-Hsueh & Huang, Li-Shan & Yang, Cheng-Tao, 2022. "Invariant tests for functional data with application to an earthquake impact study," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Wang, Jingyi & Zhu, Tianming & Zhang, Jin-Ting, 2024. "Two-sample test for high-dimensional covariance matrices: A normal-reference approach," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
    14. Łukasz Smaga & Jin‐Ting Zhang, 2020. "Linear hypothesis testing for weighted functional data with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 493-515, June.
    15. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    16. Mingxiang Cao & Ziyang Cheng & Kai Xu & Daojiang He, 2024. "A scale-invariant test for linear hypothesis of means in high dimensions," Statistical Papers, Springer, vol. 65(6), pages 3477-3497, August.
    17. Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
    18. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.
    19. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    20. Zhang, Liang & Zhu, Tianming & Zhang, Jin-Ting, 2020. "A Simple Scale-Invariant Two-Sample Test for High-dimensional Data," Econometrics and Statistics, Elsevier, vol. 14(C), pages 131-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01698-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.