IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v204y2024ics0047259x24000617.html
   My bibliography  Save this article

Two-sample test for high-dimensional covariance matrices: A normal-reference approach

Author

Listed:
  • Wang, Jingyi
  • Zhu, Tianming
  • Zhang, Jin-Ting

Abstract

Testing the equality of the covariance matrices of two high-dimensional samples is a fundamental inference problem in statistics. Several tests have been proposed but they are either too liberal or too conservative when the required assumptions are not satisfied which attests that they are not always applicable in real data analysis. To overcome this difficulty, a normal-reference test is proposed and studied in this paper. It is shown that under some regularity conditions and the null hypothesis, the proposed test statistic and a chi-squared-type mixture have the same limiting distribution. It is then justified to approximate the null distribution of the proposed test statistic using that of the chi-squared-type mixture. The distribution of the chi-squared-type mixture can be well approximated using a three-cumulant matched chi-squared-approximation with its approximation parameters consistently estimated from the data. The asymptotic power of the proposed test under a local alternative is also established. Simulation studies and a real data example demonstrate that the proposed test works well in general scenarios and outperforms the existing competitors substantially in terms of size control.

Suggested Citation

  • Wang, Jingyi & Zhu, Tianming & Zhang, Jin-Ting, 2024. "Two-sample test for high-dimensional covariance matrices: A normal-reference approach," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000617
    DOI: 10.1016/j.jmva.2024.105354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tony Cai & Weidong Liu & Yin Xia, 2013. "Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 265-277, March.
    2. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    3. Hyodo, Masashi & Nishiyama, Takahiro & Pavlenko, Tatjana, 2020. "On error bounds for high-dimensional asymptotic distribution of L2-type test statistic for equality of means," Statistics & Probability Letters, Elsevier, vol. 157(C).
    4. Zhang, Liang & Zhu, Tianming & Zhang, Jin-Ting, 2020. "A Simple Scale-Invariant Two-Sample Test for High-dimensional Data," Econometrics and Statistics, Elsevier, vol. 14(C), pages 131-144.
    5. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    6. Rui Wang & Wangli Xu, 2022. "An approximate randomization test for the high-dimensional two-sample Behrens–Fisher problem under arbitrary covariances [Broad patterns of gene expression revealed by clustering analysis of tumor ," Biometrika, Biometrika Trust, vol. 109(4), pages 1117-1132.
    7. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    8. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    9. Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
    10. Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
    11. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.
    12. Jin-Ting Zhang & Jia Guo & Bu Zhou & Ming-Yen Cheng, 2020. "A Simple Two-Sample Test in High Dimensions Based on L2-Norm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 1011-1027, April.
    13. Jin-Ting Zhang, 2005. "Approximate and Asymptotic Distributions of Chi-Squared-Type Mixtures With Applications," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 273-285, March.
    14. Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingjuan Zhang & Libin Jin, 2024. "High-Dimensional U-Statistics Type Hypothesis Testing via Jackknife Pseudo-Values with Multiplier Bootstrap," Mathematics, MDPI, vol. 12(23), pages 1-20, December.
    2. Tao Zhang & Zhiwen Wang & Yanling Wan, 2021. "Functional test for high-dimensional covariance matrix, with application to mitochondrial calcium concentration," Statistical Papers, Springer, vol. 62(3), pages 1213-1230, June.
    3. Cheng, Guanghui & Liu, Baisen & Tian, Guoliang & Zheng, Shurong, 2020. "Testing proportionality of two high-dimensional covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    4. Xie, Jichun & Kang, Jian, 2017. "High-dimensional tests for functional networks of brain anatomic regions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 70-88.
    5. Jianghao Li & Shizhe Hong & Zhenzhen Niu & Zhidong Bai, 2025. "Test for high-dimensional linear hypothesis of mean vectors via random integration," Statistical Papers, Springer, vol. 66(1), pages 1-34, January.
    6. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    7. Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Mingxiang Cao & Yuanjing He, 2022. "A high-dimensional test on linear hypothesis of means under a low-dimensional factor model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 557-572, July.
    9. Thulin, Måns, 2014. "A high-dimensional two-sample test for the mean using random subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 26-38.
    10. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    11. Deepak Nag Ayyala & Santu Ghosh & Daniel F. Linder, 2022. "Covariance matrix testing in high dimension using random projections," Computational Statistics, Springer, vol. 37(3), pages 1111-1141, July.
    12. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    13. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    14. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
    16. Tianming Zhu, 2025. "The general linear hypothesis testing problem for multivariate functional data with applications," Statistical Papers, Springer, vol. 66(4), pages 1-32, June.
    17. Wenchuan Guo & Yongcheng Qi, 2024. "Asymptotic distributions for likelihood ratio tests for the equality of covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(3), pages 247-279, April.
    18. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    19. Zhang, Yangchun & Zhou, Yirui & Liu, Xiaowei, 2023. "Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    20. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.