IDEAS home Printed from https://ideas.repec.org/p/cmf/wpaper/wp2004_0411.html
   My bibliography  Save this paper

Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations

Author

Listed:
  • F. Javier Mencía
  • Enrique Sentana

Abstract

We analyse the Generalised Hyperbolic distribution as a model for fat tails and asymmetries in multivariate conditionally heteroskedastic dynamic regression models. We provide a standardised version of this distribution, obtain analytical expressions for the log-likelihood score, and explain how to evaluate the information matrix. In addition, we derive tests for the null hypotheses of multivariate normal and Student t innovations, and decompose them into skewness and kurtosis components, from which we obtain more powerful one-sided versions. Finally, we present an empirical illustration with UK sectorial stock returns, which suggests that their conditional distribution is asymmetric and leptokurtic.

Suggested Citation

  • F. Javier Mencía & Enrique Sentana, 2004. "Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations," Working Papers wp2004_0411, CEMFI.
  • Handle: RePEc:cmf:wpaper:wp2004_0411
    as

    Download full text from publisher

    File URL: https://www.cemfi.es/ftp/wp/0411.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    2. Kilian, Lutz & Demiroglu, Ufuk, 2000. "Residual-Based Tests for Normality in Autoregressions: Asymptotic Theory and Simulation Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 40-50, January.
    3. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    4. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    5. Anders Eriksson & Lars Forsberg & Eric Ghysels, 2004. "Approximating the Probability Distribution of Functions of Random Variables: A New Approach," CIRANO Working Papers 2004s-21, CIRANO.
    6. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
    7. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
    8. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    9. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    10. Lee, Lung-Fei & Chesher, Andrew, 1986. "Specification testing when score test statistics are identically zero," Journal of Econometrics, Elsevier, vol. 31(2), pages 121-149, March.
    11. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    12. Luc Bauwens & Sébastien Laurent, 2002. "A New Class of Multivariate skew Densities, with Application to GARCH Models," Computing in Economics and Finance 2002 5, Society for Computational Economics.
    13. H. D. Vinod & B. D. McCullough, 1999. "The Numerical Reliability of Econometric Software," Journal of Economic Literature, American Economic Association, vol. 37(2), pages 633-665, June.
    14. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    15. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    16. H. D. Vinod & B. D. McCullough, 1999. "Corrigenda: The Numerical Reliability of Econometric Software," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1565-1565, December.
    17. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    18. Davidson, Russel & MacKinnon, James G., 1983. "Small sample properties of alternative forms of the Lagrange Multiplier test," Economics Letters, Elsevier, vol. 12(3-4), pages 269-275.
    19. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2004. "On the validity of the Jarque-Bera normality test in conditionally heteroskedastic dynamic regression models," Economics Letters, Elsevier, vol. 83(3), pages 307-312, June.
    20. repec:adr:anecst:y:1986:i:4:p:05 is not listed on IDEAS
    21. Magnus, J.R., 1986. "The exact moments of a ratio of quadratic forms in normal variables," Other publications TiSEM c6725407-ac3c-44fd-b6d1-5, Tilburg University, School of Economics and Management.
    22. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    23. Sargan, J D, 1983. "Identification and Lack of Identification," Econometrica, Econometric Society, vol. 51(6), pages 1605-1633, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizalde, Abel & Repullo, Rafael, 2004. "Economic and Regulatory Capital: What is the Difference?," CEPR Discussion Papers 4770, C.E.P.R. Discussion Papers.
    2. Juan-José Ganuza & Gerard Llobet & Beatriz Domínguez, 2009. "R& D in the Pharmaceutical Industry: A World of Small Innovations," Management Science, INFORMS, vol. 55(4), pages 539-551, April.
    3. André Lucas & Bernd Schwaab & Xin Zhang, 2014. "Conditional Euro Area Sovereign Default Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 271-284, April.
    4. Gonzalo, J. & Olmo, J., 2007. "The impact of heavy tails and comovements in downside-risk diversification," Working Papers 07/02, Department of Economics, City University London.
    5. Abel Elizalde, 2006. "Credit Risk Models IV: Understanding and Pricing CDOs," Working Papers wp2006_0608, CEMFI.
    6. André Lucas & Bernd Schwaab & Xin Zhang, 2017. "Modeling Financial Sector Joint Tail Risk in the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 171-191, January.
    7. Lanne, Markku & Saikkonen, Pentti, 2007. "A Multivariate Generalized Orthogonal Factor GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 61-75, January.
    8. Neil Shephard & Ole E. Barndorff-Nielsen, 2012. "Basics of Levy processes," Economics Series Working Papers 610, University of Oxford, Department of Economics.
    9. Gabriele Fiorentini & Enrique Sentana, 2007. "On the efficiency and consistency of likelihood estimation in multivariate conditionally heteroskedastic dynamic regression models," Working Paper series 38_07, Rimini Centre for Economic Analysis.
    10. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    11. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2008. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working papers 2008-49, University of Connecticut, Department of Economics.
    12. Ceron, Jose A. & Suarez, Javier, 2006. "Hot and Cold Housing Markets: International Evidence," CEPR Discussion Papers 5411, C.E.P.R. Discussion Papers.
    13. Chen, Heng & Fan, Yanqin & Wu, Jisong, 2014. "A flexible parametric approach for estimating switching regime models and treatment effect parameters," Journal of Econometrics, Elsevier, vol. 181(2), pages 77-91.
    14. Xin Zhang & Drew Creal & Siem Jan Koopman & Andre Lucas, 2011. "Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails," Tinbergen Institute Discussion Papers 11-078/2/DSF22, Tinbergen Institute.
    15. Enrique Sentana & Giorgio Calzolari & Gabriele Fiorentini, 2004. "Indirect Estimation of Conditionally Heteroskedastic Factor Models," Working Papers wp2004_0409, CEMFI.
    16. Javier Diaz-Gimenez & Josep Pijoan-Mas, 2006. "Flat Tax Reforms in the U.S.: a Boon for the Income Poor," Computing in Economics and Finance 2006 400, Society for Computational Economics.
    17. Aleix Calveras & Juan-José Ganuza & Gerard Llobet, 2005. "Regulation and Opportunism: How Much Activism Do We Need?," Working Papers wp2005_0508, CEMFI.
    18. Pei Pei, 2010. "Backtesting Portfolio Value-at-Risk with Estimated Portfolio Weights," CAEPR Working Papers 2010-010, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    19. David Scott & Diethelm Würtz & Christine Dong & Thanh Tran, 2011. "Moments of the generalized hyperbolic distribution," Computational Statistics, Springer, vol. 26(3), pages 459-476, September.
    20. Ole Eiler Barndorff‐Nielsen & Robert Stelzer, 2005. "Absolute Moments of Generalized Hyperbolic Distributions and Approximate Scaling of Normal Inverse Gaussian Lévy Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 617-637, December.
    21. Andre Lucas & Bernd Schwaab & Xin Zhang, 2013. "Measuring Credit Risk in a Large Banking System: Econometric Modeling and Empirics," Tinbergen Institute Discussion Papers 13-063/IV/DSF56, Tinbergen Institute, revised 13 Oct 2014.
    22. Schwaab, Bernd & Lucas, André & Zhang, Xin, 2013. "Conditional and joint credit risk," Working Paper Series 1621, European Central Bank.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cmf:wpaper:wp2004_0411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Araceli Requerey). General contact details of provider: http://edirc.repec.org/data/cemfies.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.