IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.05823.html
   My bibliography  Save this paper

Polynomial Log-Marginals and Tweedie's Formula : When Is Bayes Possible?

Author

Listed:
  • Jyotishka Datta
  • Nicholas G. Polson

Abstract

Motivated by Tweedie's formula for the Compound Decision problem, we examine the theoretical foundations of empirical Bayes estimators that directly model the marginal density $m(y)$. Our main result shows that polynomial log-marginals of degree $k \ge 3 $ cannot arise from any valid prior distribution in exponential family models, while quadratic forms correspond exactly to Gaussian priors. This provides theoretical justification for why certain empirical Bayes decision rules, while practically useful, do not correspond to any formal Bayes procedures. We also strengthen the diagnostic by showing that a marginal is a Gaussian convolution only if it extends to a bounded solution of the heat equation in a neighborhood of the smoothing parameter, beyond the convexity of $c(y)=\tfrac12 y^2+\log m(y)$.

Suggested Citation

  • Jyotishka Datta & Nicholas G. Polson, 2025. "Polynomial Log-Marginals and Tweedie's Formula : When Is Bayes Possible?," Papers 2509.05823, arXiv.org.
  • Handle: RePEc:arx:papers:2509.05823
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.05823
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.05823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.