IDEAS home Printed from
   My bibliography  Save this article

Accounting for uncertainty in health economic decision models by using model averaging


  • Christopher H. Jackson
  • Simon G. Thompson
  • Linda D. Sharples


Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment. Copyright (c) 2009 Royal Statistical Society.

Suggested Citation

  • Christopher H. Jackson & Simon G. Thompson & Linda D. Sharples, 2009. "Accounting for uncertainty in health economic decision models by using model averaging," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 383-404.
  • Handle: RePEc:bla:jorssa:v:172:y:2009:i:2:p:383-404

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jackson Christopher H & Sharples Linda D & Thompson Simon G, 2010. "Survival Models in Health Economic Evaluations: Balancing Fit and Parsimony to Improve Prediction," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, October.
    2. Christopher H. Jackson & Linda D. Sharples & Simon G. Thompson, 2010. "Structural and parameter uncertainty in Bayesian cost-effectiveness models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 233-253.
    3. Vanina Forget, 2012. "Doing well and doing good: a multi-dimensional puzzle," Working Papers hal-00672037, HAL.
    4. repec:spr:pharme:v:36:y:2018:i:2:d:10.1007_s40273-017-0603-4 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:172:y:2009:i:2:p:383-404. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.