Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this paperBayesian Approaches to Shrinkage and Sparse Estimation
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
References listed on IDEAS
- Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
- Koop, Gary & Korobilis, Dimitris, 2016.
"Model uncertainty in Panel Vector Autoregressive models,"
European Economic Review, Elsevier, vol. 81(C), pages 115-131.
- Gary Koop & Dimitris Korobilis, 2014. "Model uncertainty in panel vector autoregressive models," Working Papers 1408, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2014. "Model Uncertainty in Panel Vector Autoregressive Models," MPRA Paper 58131, University Library of Munich, Germany.
- Koop, Gary & Korobilis, Dimitris, 2014. "Model Uncertainty in Panel Vector Autoregressive Models," SIRE Discussion Papers 2014-011, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2015. "Model Uncertainty in Panel Vector Autoregressive Models," Working Paper series 15-35, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2014. "Model Uncertainty in Panel Vector Autoregressive Models," Working Paper series 39_14, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2014. "Model uncertainty in panel vector autoregressive models," Working Papers 2014_10, Business School - Economics, University of Glasgow.
- Rahim Alhamzawi & Keming Yu, 2012. "Variable selection in quantile regression via Gibbs sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 799-813, August.
- Sirio Legramanti & Daniele Durante & David B Dunson, 2020. "Bayesian cumulative shrinkage for infinite factorizations," Biometrika, Biometrika Trust, vol. 107(3), pages 745-752.
- Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012.
"Time Varying Dimension Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
- Chan, Joshua C C & Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W, 2010. "Time Varying Dimension Models," SIRE Discussion Papers 2012-33, Scottish Institute for Research in Economics (SIRE).
- Joshua C C Chan & Gary Koop & Roberto Leon-Gonzales & Rodney W Strachan, 2011. "Time Varying Dimension Models," CAMA Working Papers 2011-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2010. "Time Varying Dimension Models," Working Paper series 44_10, Rimini Centre for Economic Analysis.
- Joshua Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2011. "Time Varying Dimension Models," Working Papers 1116, University of Strathclyde Business School, Department of Economics.
- Joshua C.C. Chan & Garry Koop & Roberto Leon Gonzales & Rodney W. Strachan, 2010. "Time Varying Dimension Models," ANU Working Papers in Economics and Econometrics 2010-523, Australian National University, College of Business and Economics, School of Economics.
- Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014.
"Hierarchical Shrinkage in Time‐Varying Parameter Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
- Belmonte, Miguel A & Koop, Gary & Korobilis, Dimitris, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," SIRE Discussion Papers 2012-68, Scottish Institute for Research in Economics (SIRE).
- BELMONTE, Miguel A.G. & KOOP, Gary & KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage in time-varying parameter models," LIDAM Discussion Papers CORE 2011036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Miguel A. G. Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Paper series 35_11, Rimini Centre for Economic Analysis.
- Miguel Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Papers 1137, University of Strathclyde Business School, Department of Economics.
- Miguel, Belmonte & Gary, Koop & Dimitris, Korobilis, 2011. "Hierarchical shrinkage in time-varying parameter models," MPRA Paper 31827, University Library of Munich, Germany.
- Korobilis, Dimitris & Pettenuzzo, Davide, 2020.
"Machine Learning Econometrics: Bayesian algorithms and methods,"
MPRA Paper
100165, University Library of Munich, Germany.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Papers 2004.11486, arXiv.org.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 130, Brandeis University, Department of Economics and International Business School.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 2020_09, Business School - Economics, University of Glasgow.
- Chris Hans, 2009. "Bayesian lasso regression," Biometrika, Biometrika Trust, vol. 96(4), pages 835-845.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022.
"Energy Markets and Global Economic Conditions,"
The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," CESifo Working Paper Series 8282, CESifo.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," Working Papers 2020_08, Business School - Economics, University of Glasgow.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," NBER Working Papers 27001, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Korobilis, Dimitris & Lee, Thomas K., 2020. "Energy Markets and Global Economic Conditions," CEPR Discussion Papers 14580, C.E.P.R. Discussion Papers.
- Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Smith M. & Kohn R., 2002. "Parsimonious Covariance Matrix Estimation for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1141-1153, December.
- Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001.
"Benchmark priors for Bayesian model averaging,"
Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
- Carmen Fernández & Eduardo Ley & Mark F. J. Steel, "undated". "Benchmark priors for Bayesian Model averaging," Working Papers 98-06, FEDEA.
- Carmen Fernandez & Eduardo Ley & Mark F J Steel, 1998. "Benchmark priors for Bayesian model averaging," Edinburgh School of Economics Discussion Paper Series 26, Edinburgh School of Economics, University of Edinburgh.
- Carmen Fernandez & Eduardo Ley & Mark F.J. Steel, 1998. "Benchmark Priors for Bayesian Model Averaging," Econometrics 9804001, University Library of Munich, Germany, revised 08 Oct 2001.
- Carmen Fernandez & Eduardo Ley & Mark F J Steel, 1998. "Benchmark priors for Bayesian model averaging," Edinburgh School of Economics Discussion Paper Series 66, Edinburgh School of Economics, University of Edinburgh.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Bayesian compressed vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103, Brandeis University, Department of Economics and International Business School.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 2016_09, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103R, Brandeis University, Department of Economics and International Business School, revised Apr 2016.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2017. "Bayesian Compressed Vector Autoregressions," Working Paper series 17-32, Rimini Centre for Economic Analysis.
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Veronika Ročková & Edward I. George, 2018. "The Spike-and-Slab LASSO," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 431-444, January.
- Korobilis, Dimitris, 2013.
"Bayesian forecasting with highly correlated predictors,"
Economics Letters, Elsevier, vol. 118(1), pages 148-150.
- Korobilis, Dimitris, 2012. "Bayesian forecasting with highly correlated predictors," SIRE Discussion Papers 2012-80, Scottish Institute for Research in Economics (SIRE).
- Dimitris Korobilis, 2012. "Bayesian forecasting with highly correlated predictors," Working Papers 2012_12, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2012. "Bayesian Forecasting with Highly Correlated Predictors," Working Paper series 67_12, Rimini Centre for Economic Analysis.
- Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
- Chenlei Leng & Minh-Ngoc Tran & David Nott, 2014. "Bayesian adaptive Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 221-244, April.
- Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
- Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
- Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Adaptive hierarchical priors for high-dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 241-271.
- Dimitris Korobilis & Davide Pettenuzzo, 2017. "Adaptive Hierarchical Priors for High-Dimensional Vector Autoregessions," Working Papers 115, Brandeis University, Department of Economics and International Business School.
- Dimitris Korobilis & Davide Pettenuzzo, 2018. "Adaptive Hierarchical Priors for High-Dimensional Vector Autoregressions," Working Paper series 18-21, Rimini Centre for Economic Analysis.
- Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
- Korobilis, Dimitris, 2016.
"Prior selection for panel vector autoregressions,"
Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
- Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," SIRE Discussion Papers 2015-73, Scottish Institute for Research in Economics (SIRE).
- Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," MPRA Paper 64143, University Library of Munich, Germany.
- Dimitris Korobilis., 2015. "Prior selection for panel vector autoregressions," Working Papers 2015_10, Business School - Economics, University of Glasgow.
- Korobilis, Dimitris & Landau, Bettina & Musso, Alberto & Phella, Anthoulla, 2021. "The time-varying evolution of inflation risks," Working Paper Series 2600, European Central Bank.
- Tiago M. Fragoso & Wesley Bertoli & Francisco Louzada, 2018. "Bayesian Model Averaging: A Systematic Review and Conceptual Classification," International Statistical Review, International Statistical Institute, vol. 86(1), pages 1-28, April.
- Khare, Kshitij & Hobert, James P., 2012. "Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 108-116.
- David J. Nott & Robert Kohn, 2005. "Adaptive sampling for Bayesian variable selection," Biometrika, Biometrika Trust, vol. 92(4), pages 747-763, December.
- Joshua Chan & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018.
"Invariant Inference and Efficient Computation in the Static Factor Model,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 819-828, April.
- Joshua C.C. Chan & Roberto Leon-Gonzalez & Rodney W. Strachan, 2013. "Invariant Inference and Efficient Computation in the Static Factor Model," CAMA Working Papers 2013-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
- Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2016. "Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem," Journal of Econometrics, Elsevier, vol. 192(1), pages 190-206.
- Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001.
"Model uncertainty in cross-country growth regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
- Carmen Fernandez & Eduardo Ley & Mark Steel, 1999. "Model uncertainty in cross-country growth regressions," Econometrics 9903003, University Library of Munich, Germany, revised 06 Oct 2001.
- Carmen Fernandez & Eduardo Ley & Mark Steel, 2001. "Model uncertainty in cross-country growth regressions," Econometrics 0110002, University Library of Munich, Germany.
- Veronika Ročková & Edward I. George, 2016. "Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1608-1622, October.
- Kadane, Joseph B. & Lazar, Nicole A., 2004. "Methods and Criteria for Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 279-290, January.
- Subahdip Pal & Kshitij Khare & James P. Hobert, 2017. "Trace Class Markov Chains for Bayesian Inference with Generalized Double Pareto Shrinkage Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 307-323, June.
- Dimitris Korobilis, 2020.
"Sign restrictions in high-dimensional vector autoregressions,"
Working Papers
2020_21, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Paper series 20-09, Rimini Centre for Economic Analysis.
- Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
- Dimitris Korobilis, 2021.
"High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019_07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- O. Papaspiliopoulos & D. Rossell, 2017. "Bayesian block-diagonal variable selection and model averaging," Biometrika, Biometrika Trust, vol. 104(2), pages 343-359.
- repec:dau:papers:123456789/1908 is not listed on IDEAS
- Dimitris Korobilis, 2013.
"Var Forecasting Using Bayesian Variable Selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
- Korobilis, Dimitris, 2009. "VAR forecasting using Bayesian variable selection," MPRA Paper 21124, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "VAR forecasting using Bayesian variable selection," LIDAM Discussion Papers CORE 2011022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Korobilis, 2010. "VAR Forecasting Using Bayesian Variable Selection," Working Paper series 51_10, Rimini Centre for Economic Analysis, revised Apr 2011.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Linde, 2014. "The deviance information criterion: 12 years on," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 485-493, June.
- Artin Armagan & Russell Zaretzki, 2010. "Model selection via adaptive shrinkage with t priors," Computational Statistics, Springer, vol. 25(3), pages 441-461, September.
- Valen E. Johnson & David Rossell, 2010. "On the use of non‐local prior densities in Bayesian hypothesis tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 143-170, March.
- Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
- Guillaume Dehaene & Simon Barthelmé, 2018. "Expectation propagation in the large data limit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 199-217, January.
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Ishwaran H. & Rao J.S., 2003. "Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 438-455, January.
- Veronika Ročková & Edward I. George, 2014. "EMVS: The EM Approach to Bayesian Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 828-846, June.
- Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Dynamic shrinkage processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 781-804, September.
- Yixin Wang & David M. Blei, 2019. "Frequentist Consistency of Variational Bayes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1147-1161, July.
- Koop, Gary & Korobilis, Dimitris, 2010.
"Bayesian Multivariate Time Series Methods for Empirical Macroeconomics,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
- Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Working Paper series 47_09, Rimini Centre for Economic Analysis.
- Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
- Chan, Joshua C.C. & Grant, Angelia L., 2016.
"Fast computation of the deviance information criterion for latent variable models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Fast Computation of the Deviance Information Criterion for Latent Variable Models," CAMA Working Papers 2014-09, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Li, Hanning & Pati, Debdeep, 2017. "Variable selection using shrinkage priors," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 107-119.
- Hans, Chris & Dobra, Adrian & West, Mike, 2007. "Shotgun Stochastic Search for," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 507-516, June.
- A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
- Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
- Ghosh, Joyee & Clyde, Merlise A., 2011. "Rao–Blackwellization for Bayesian Variable Selection and Model Averaging in Linear and Binary Regression: A Novel Data Augmentation Approach," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1041-1052.
- Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Yuan, Ming & Lin, Yi, 2005. "Efficient Empirical Bayes Variable Selection and Estimation in Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1215-1225, December.
- Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
- Sanvesh Srivastava & Barbara E. Engelhardt & David B. Dunson, 2017. "Expandable factor analysis," Biometrika, Biometrika Trust, vol. 104(3), pages 649-663.
- Anindya Bhadra & Jyotishka Datta & Yunfan Li & Nicholas Polson, 2020. "Horseshoe Regularisation for Machine Learning in Complex and Deep Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 302-320, August.
- Tomi Peltola & Pekka Marttinen & Aki Vehtari, 2012. "Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
- Dunson, David B. & Herring, Amy H. & Engel, Stephanie M., 2008. "Bayesian Selection and Clustering of Polymorphisms in Functionally Related Genes," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 534-546, June.
- Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
- Chris T. Volinsky & Adrian E. Raftery, 2000. "Bayesian Information Criterion for Censored Survival Models," Biometrics, The International Biometric Society, vol. 56(1), pages 256-262, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dimitris Korobilis & Maximilian Schroder, 2023.
"Monitoring multicountry macroeconomic risk,"
Papers
2305.09563, arXiv.org.
- Dimitris Korobilis & Maximilian Schröder, 2023. "Monitoring multicountry macroeconomic risk," Working Papers No 06/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Dimitris Korobilis & Maximilian Schröder, 2023. "Monitoring multicountry macroeconomic risk," Working Papers 2023_07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Maximilian Schröder, 2023. "Monitoring multicountry macroeconomic risk," Working Paper series 23-06, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Maximilian Schröder, 2023. "Monitoring multicountry macroeconomic risk," Working Paper 2023/9, Norges Bank.
- Francesco Ravazzolo & Luca Rossini, 2023.
"Is the Price Cap for Gas Useful? Evidence from European Countries,"
Working Papers
2023.23, Fondazione Eni Enrico Mattei.
- Ravazzolo, Francesco & Rossini, Luca, 2023. "Is the Price Cap for Gas Useful? Evidence from European Countries," FEEM Working Papers 338790, Fondazione Eni Enrico Mattei (FEEM).
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Maximilian Schroder, 2024. "Mixing it up: Inflation at risk," Papers 2405.17237, arXiv.org, revised May 2024.
- Donald J. Lacombe & Nasima Khatun, 2023. "What are the determinants of financial well‐being? A Bayesian LASSO approach," American Journal of Economics and Sociology, Wiley Blackwell, vol. 82(1), pages 43-59, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Dimitris Korobilis, 2018.
"Machine Learning Macroeconometrics: A Primer,"
Working Paper series
18-30, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2018. "Machine Learning Macroeconometrics A Primer," Essex Finance Centre Working Papers 22666, University of Essex, Essex Business School.
- Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Chan, Joshua C.C., 2023.
"Comparing stochastic volatility specifications for large Bayesian VARs,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
- Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
- Yang Aijun & Xiang Ju & Yang Hongqiang & Lin Jinguan, 2018. "Sparse Bayesian Variable Selection in Probit Model for Forecasting U.S. Recessions Using a Large Set of Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1123-1138, April.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022.
"APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2021. "Approximate Bayesian inference and forecasting in huge-dimensional multi-country VARs," Papers 2103.04944, arXiv.org, revised Feb 2022.
- Joshua C. C. Chan, 2018.
"Specification tests for time-varying parameter models with stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
- Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Korobilis, Dimitris & Koop, Gary, 2018.
"Variational Bayes inference in high-dimensional time-varying parameter models,"
Essex Finance Centre Working Papers
22665, University of Essex, Essex Business School.
- Gary Koop & Dimitris Korobilis, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Working Paper series 18-31, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," MPRA Paper 87972, University Library of Munich, Germany.
More about this item
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
- C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ORE-2022-02-21 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:22-02. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Savioli (email available below). General contact details of provider: https://edirc.repec.org/data/rcfeait.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.