Bayesian dynamic variable selection in high dimensions
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
References listed on IDEAS
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Dynamic shrinkage processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 781-804, September.
- Yixin Wang & David M. Blei, 2019. "Frequentist Consistency of Variational Bayes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1147-1161, July.
- Michael W. McCracken & Serena Ng, 2021.
"FRED-QD: A Quarterly Database for Macroeconomic Research,"
Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
- Michael W. McCracken & Serena Ng, 2020. "FRED-QD: A Quarterly Database for Macroeconomic Research," Working Papers 2020-005, Federal Reserve Bank of St. Louis.
- Michael McCracken & Serena Ng, 2020. "FRED-QD: A Quarterly Database for Macroeconomic Research," NBER Working Papers 26872, National Bureau of Economic Research, Inc.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015.
"The Contribution of Structural Break Models to Forecasting Macroeconomic Series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2011. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Working Paper series 38_11, Rimini Centre for Economic Analysis.
- BAUWENS, Luc & KOOP, Gary & KOROBILIS, Dimitris & ROMBOUTS, Jeroen, 2015. "The Contribution of Structural Break Models to Forecating Macroeconomic Series," LIDAM Reprints CORE 2651, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Giordani, Paolo & Kohn, Robert, 2008.
"Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
- Giordani, Paolo & Kohn, Robert, 2006. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Working Paper Series 196, Sveriges Riksbank (Central Bank of Sweden).
- Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012.
"Time Varying Dimension Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
- Chan, Joshua C C & Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W, 2010. "Time Varying Dimension Models," SIRE Discussion Papers 2012-33, Scottish Institute for Research in Economics (SIRE).
- Joshua C C Chan & Gary Koop & Roberto Leon-Gonzales & Rodney W Strachan, 2011. "Time Varying Dimension Models," CAMA Working Papers 2011-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2010. "Time Varying Dimension Models," Working Paper series 44_10, Rimini Centre for Economic Analysis.
- Joshua Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2011. "Time Varying Dimension Models," Working Papers 1116, University of Strathclyde Business School, Department of Economics.
- Joshua C.C. Chan & Garry Koop & Roberto Leon Gonzales & Rodney W. Strachan, 2010. "Time Varying Dimension Models," ANU Working Papers in Economics and Econometrics 2010-523, Australian National University, College of Business and Economics, School of Economics.
- Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014.
"Hierarchical Shrinkage in Time‐Varying Parameter Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
- Belmonte, Miguel A & Koop, Gary & Korobilis, Dimitris, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," SIRE Discussion Papers 2012-68, Scottish Institute for Research in Economics (SIRE).
- BELMONTE, Miguel A.G. & KOOP, Gary & KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage in time-varying parameter models," LIDAM Discussion Papers CORE 2011036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Miguel A. G. Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Paper series 35_11, Rimini Centre for Economic Analysis.
- Miguel Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Papers 1137, University of Strathclyde Business School, Department of Economics.
- Miguel, Belmonte & Gary, Koop & Dimitris, Korobilis, 2011. "Hierarchical shrinkage in time-varying parameter models," MPRA Paper 31827, University Library of Munich, Germany.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015.
"The Contribution of Structural Break Models to Forecasting Macroeconomic Series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
- BAUWENS, Luc & KOOP, Gary & KOROBILIS, Dimitris & ROMBOUTS, Jeroen V. K., 2011. "A comparison of forecasting procedures for macroeconomic series: the contribution of structural break models," LIDAM Discussion Papers CORE 2011003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen Rombouts, 2011. "A comparison of Forecasting Procedures for Macroeconomic Series: The Contribution of Structural Break Models," Working Papers 1113, University of Strathclyde Business School, Department of Economics.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2011. "A Comparison of Forecasting Procedures for Macroeconomic Series: the Contribution of Structural Break Models," Cahiers de recherche 1104, CIRPEE.
- Bauwens, Luc & Korobilis, Dimitris & Koop, Gary & Rombouts, Jeroen V.K., 2011. "A Comparison Of Forecasting Procedures For Macroeconomic Series: The Contribution Of Structural Break Models," SIRE Discussion Papers 2011-25, Scottish Institute for Research in Economics (SIRE).
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2011. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Working Paper series 38_11, Rimini Centre for Economic Analysis.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen Rombouts, 2011. "A Comparison of Forecasting Procedures For Macroeconomic Series: The Contribution of Structural Break Models," CIRANO Working Papers 2011s-13, CIRANO.
- Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
- Davide Pettenuzzo & Allan Timmermann, 2017.
"Forecasting Macroeconomic Variables Under Model Instability,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 183-201, April.
- Timmermann, Allan & Pettenuzzo, Davide, 2016. "Forecasting Macroeconomic Variables under Model Instability," CEPR Discussion Papers 11355, C.E.P.R. Discussion Papers.
- Timothy Cogley & Thomas J. Sargent, 2005.
"Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
- Timothy Cogley & Thomas Sargent, "undated". "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
- Timothy Cogley & Thomas J. Sargent, 2003. "Drifts and volatilities: monetary policies and outcomes in the post WWII U.S," FRB Atlanta Working Paper 2003-25, Federal Reserve Bank of Atlanta.
- Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2020.
"Choosing Prior Hyperparameters: With Applications to Time-Varying Parameter Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 124-136, January.
- Wang, Mu-Chun, 2018. "Choosing Prior Hyperparameters: With Applications To Time-Varying Parameter Models," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181621, Verein für Socialpolitik / German Economic Association.
- Korobilis, D, 2017.
"Forecasting with many predictors using message passing algorithms,"
Essex Finance Centre Working Papers
19565, University of Essex, Essex Business School.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023.
"Pockets of Predictability,"
Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
- Timmermann, Allan & Farmer, Leland E. & Schmidt, Lawrence, 2018. "Pockets of Predictability," CEPR Discussion Papers 12885, C.E.P.R. Discussion Papers.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
- Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015.
"Measuring Uncertainty,"
American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2013. "Measuring Uncertainty," NBER Working Papers 19456, National Bureau of Economic Research, Inc.
- David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin, 2021.
"Variational Bayes in State Space Models: Inferential and Predictive Accuracy,"
Papers
2106.12262, arXiv.org, revised Feb 2022.
- David T. Frazier & Gael M. Martin & Ruben Loaiza-Maya, 2022. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Monash Econometrics and Business Statistics Working Papers 1/22, Monash University, Department of Econometrics and Business Statistics.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Giannone, Domenico & Reichlin, Lucrezia & De Mol, Christine, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 700, European Central Bank.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
- Cooley, Thomas F & Prescott, Edward C, 1976. "Estimation in the Presence of Stochastic Parameter Variation," Econometrica, Econometric Society, vol. 44(1), pages 167-184, January.
- Korobilis, Dimitris, 2019.
"High-dimensional macroeconomic forecasting using message passing algorithms,"
MPRA Paper
96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019-07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Laurent Callot & Johannes Tang Kristensen, 2014.
"Vector Autoregressions with Parsimoniously Time Varying Parameters and an Application to Monetary Policy,"
CREATES Research Papers
2014-41, Department of Economics and Business Economics, Aarhus University.
- Laurent Callot & Johannes Tang Kristensen, 2014. "Vector Autoregressions with parsimoniously Time Varying Parameters and an Application to Monetary Policy," Tinbergen Institute Discussion Papers 14-145/III, Tinbergen Institute, revised 09 Apr 2015.
- Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018.
"On The Sources Of Uncertainty In Exchange Rate Predictability,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
- Byrne, Joseph P & Korobilis, Dimitris & Ribeiro, Pinho J, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," MPRA Paper 58956, University Library of Munich, Germany.
- Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," Working Papers 2014_16, Business School - Economics, University of Glasgow.
- Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," SIRE Discussion Papers 2015-24, Scottish Institute for Research in Economics (SIRE).
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
- Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
- Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
- Dimitris Korobilis, 2021.
"High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019_07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
- Shively, Thomas S. & Kohn, Robert, 1997. "A Bayesian approach to model selection in stochastic coefficient regression models and structural time series models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 39-52.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin, 2021.
"Variational Bayes in State Space Models: Inferential and Predictive Accuracy,"
Papers
2106.12262, arXiv.org, revised Feb 2022.
- David T. Frazier & Gael M. Martin & Ruben Loaiza-Maya, 2022. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Monash Econometrics and Business Statistics Working Papers 1/22, Monash University, Department of Econometrics and Business Statistics.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Jiawen Luo & Tony Klein & Thomas Walther & Qiang Ji, 2024.
"Forecasting realized volatility of crude oil futures prices based on machine learning,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1422-1446, August.
- Luo, Jiawen & Klein, Tony & Walther, Thomas & Ji, Qiang, 2021. "Forecasting Realized Volatility of Crude Oil Futures Prices based on Machine Learning," QBS Working Paper Series 2021/04, Queen's University Belfast, Queen's Business School.
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2020. "Point and Density Forecasting of Macroeconomic and Financial Uncertainties of the United States," Working Papers 202058, University of Pretoria, Department of Economics.
- Zhao, Jing, 2023. "Time-varying impact of geopolitical risk on natural resources prices: Evidence from the hybrid TVP-VAR model with large system," Resources Policy, Elsevier, vol. 82(C).
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Cepni, Oguzhan & Clements, Michael P., 2024.
"How local is the local inflation factor? Evidence from emerging European countries,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
- Cepni, Oguzhan & Clements, Michael P., 2021. "How Local is the Local Inflation Factor? Evidence from Emerging European Countries," Working Papers 8-2021, Copenhagen Business School, Department of Economics.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2021. "Point and density forecasting of macroeconomic and financial uncertainties of the USA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 700-707, July.
- Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Smoothing volatility targeting," Papers 2212.07288, arXiv.org.
- Salisu, Afees A. & Tchankam, Jean Paul, 2022. "US Stock return predictability with high dimensional models," Finance Research Letters, Elsevier, vol. 45(C).
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Korobilis, Dimitris & Koop, Gary, 2018.
"Variational Bayes inference in high-dimensional time-varying parameter models,"
Essex Finance Centre Working Papers
22665, University of Essex, Essex Business School.
- Gary Koop & Dimitris Korobilis, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Working Paper series 18-31, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," MPRA Paper 87972, University Library of Munich, Germany.
- Dimitris Korobilis, 2021.
"High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019_07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Korobilis, D, 2017.
"Forecasting with many predictors using message passing algorithms,"
Essex Finance Centre Working Papers
19565, University of Essex, Essex Business School.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2018.
"Machine Learning Macroeconometrics: A Primer,"
Working Paper series
18-30, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2018. "Machine Learning Macroeconometrics A Primer," Essex Finance Centre Working Papers 22666, University of Essex, Essex Business School.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Joshua C. C. Chan, 2018.
"Specification tests for time-varying parameter models with stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
- Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Cepni, Oguzhan & Clements, Michael P., 2024.
"How local is the local inflation factor? Evidence from emerging European countries,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
- Cepni, Oguzhan & Clements, Michael P., 2021. "How Local is the Local Inflation Factor? Evidence from Emerging European Countries," Working Papers 8-2021, Copenhagen Business School, Department of Economics.
- Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
- Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
More about this item
Keywords
dynamic linear model; approximate posterior inference; dynamic variable selection; forecasting;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ORE-2020-06-08 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:100164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.