Sparse Bayesian Variable Selection in Probit Model for Forecasting U.S. Recessions Using a Large Set of Predictors
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-017-9660-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Korobilis, Dimitris, 2013.
"Hierarchical shrinkage priors for dynamic regressions with many predictors,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
- Korobilis, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," MPRA Paper 30380, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," LIDAM Discussion Papers CORE 2011021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Korobilis, 2011. "Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predictors," Working Paper series 21_11, Rimini Centre for Economic Analysis.
- Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014.
"Forecasting US recessions: The role of sentiment,"
Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
- Charlotte Christiansen & Jonas Nygaard Eriksen & Stig V. Møller, 2013. "Forecasting US Recessions: The Role of Sentiments," CREATES Research Papers 2013-14, Department of Economics and Business Economics, Aarhus University.
- Dimitris Korobilis, 2013.
"Var Forecasting Using Bayesian Variable Selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
- Korobilis, Dimitris, 2009. "VAR forecasting using Bayesian variable selection," MPRA Paper 21124, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "VAR forecasting using Bayesian variable selection," LIDAM Discussion Papers CORE 2011022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Korobilis, 2010. "VAR Forecasting Using Bayesian Variable Selection," Working Paper series 51_10, Rimini Centre for Economic Analysis, revised Apr 2011.
- Korobilis, Dimitris, 2013.
"Bayesian forecasting with highly correlated predictors,"
Economics Letters, Elsevier, vol. 118(1), pages 148-150.
- Dimitris Korobilis, 2012. "Bayesian forecasting with highly correlated predictors," Working Papers 2012_12, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2012. "Bayesian Forecasting with Highly Correlated Predictors," Working Paper series 67_12, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2012. "Bayesian forecasting with highly correlated predictors," SIRE Discussion Papers 2012-80, Scottish Institute for Research in Economics (SIRE).
- Zhihong Chen & Azhar Iqbal & Huiwen Lai, 2011.
"Forecasting the probability of US recessions: a Probit and dynamic factor modelling approach,"
Canadian Journal of Economics, Canadian Economics Association, vol. 44(2), pages 651-672, May.
- Zhihong Chen & Azhar Iqbal & Huiwen Lai, 2011. "Forecasting the probability of US recessions: a Probit and dynamic factor modelling approach," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 44(2), pages 651-672, May.
- Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014.
"Hierarchical Shrinkage in Time‐Varying Parameter Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
- Belmonte, Miguel A & Koop, Gary & Korobilis, Dimitris, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," SIRE Discussion Papers 2012-68, Scottish Institute for Research in Economics (SIRE).
- BELMONTE, Miguel A.G. & KOOP, Gary & KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage in time-varying parameter models," LIDAM Discussion Papers CORE 2011036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Miguel A. G. Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Paper series 35_11, Rimini Centre for Economic Analysis.
- Miguel Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Papers 1137, University of Strathclyde Business School, Department of Economics.
- Miguel, Belmonte & Gary, Koop & Dimitris, Korobilis, 2011. "Hierarchical shrinkage in time-varying parameter models," MPRA Paper 31827, University Library of Munich, Germany.
- Sandra Stankiewicz, 2015. "Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net," Working Paper Series of the Department of Economics, University of Konstanz 2015-12, Department of Economics, University of Konstanz.
- James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
- Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001.
"Benchmark priors for Bayesian model averaging,"
Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
- Carmen Fernández & Eduardo Ley & Mark F. J. Steel, "undated". "Benchmark priors for Bayesian Model averaging," Working Papers 98-06, FEDEA.
- Carmen Fernandez & Eduardo Ley & Mark F J Steel, 1998. "Benchmark priors for Bayesian model averaging," Edinburgh School of Economics Discussion Paper Series 26, Edinburgh School of Economics, University of Edinburgh.
- Carmen Fernandez & Eduardo Ley & Mark F.J. Steel, 1998. "Benchmark Priors for Bayesian Model Averaging," Econometrics 9804001, University Library of Munich, Germany, revised 08 Oct 2001.
- Carmen Fernandez & Eduardo Ley & Mark F J Steel, 1998. "Benchmark priors for Bayesian model averaging," Edinburgh School of Economics Discussion Paper Series 66, Edinburgh School of Economics, University of Edinburgh.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Gefang, Deborah, 2014. "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage," International Journal of Forecasting, Elsevier, vol. 30(1), pages 1-11.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Giannone, Domenico & Reichlin, Lucrezia & De Mol, Christine, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 700, European Central Bank.
- Korobilis, Dimitris, 2016.
"Prior selection for panel vector autoregressions,"
Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
- Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," SIRE Discussion Papers 2015-73, Scottish Institute for Research in Economics (SIRE).
- Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," MPRA Paper 64143, University Library of Munich, Germany.
- Dimitris Korobilis., 2015. "Prior selection for panel vector autoregressions," Working Papers 2015_10, Business School - Economics, University of Glasgow.
- Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models," Journal of Econometrics, Elsevier, vol. 143(2), pages 291-316, April.
- Wright, Jonathan H., 2008.
"Bayesian Model Averaging and exchange rate forecasts,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
- Jonathan H. Wright, 2003. "Bayesian Model Averaging and exchange rate forecasts," International Finance Discussion Papers 779, Board of Governors of the Federal Reserve System (U.S.).
- Yuan, Ming & Lin, Yi, 2005. "Efficient Empirical Bayes Variable Selection and Estimation in Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1215-1225, December.
- George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Gil Cohen, 2021. "Optimizing Algorithmic Strategies for Trading Bitcoin," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 639-654, February.
- Aijun Yang & Yuzhu Tian & Yunxian Li & Jinguan Lin, 2020. "Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data," Computational Statistics, Springer, vol. 35(1), pages 245-258, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dimitris Korobilis, 2018.
"Machine Learning Macroeconometrics: A Primer,"
Working Paper series
18-30, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2018. "Machine Learning Macroeconometrics A Primer," Essex Finance Centre Working Papers 22666, University of Essex, Essex Business School.
- Aijun Yang & Ju Xiang & Lianjie Shu & Hongqiang Yang, 2018. "Sparse Bayesian Variable Selection with Correlation Prior for Forecasting Macroeconomic Variable using Highly Correlated Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 323-338, February.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Gary Koop, 2012.
"Using VARs and TVP-VARs with Many Macroeconomic Variables,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
- Gary, Koop, 2013. "Using VARs and TVP-VARs with Many Macroeconomic Variables," SIRE Discussion Papers 2013-35, Scottish Institute for Research in Economics (SIRE).
- Gary Koop, 2013. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Working Papers 1303, University of Strathclyde Business School, Department of Economics.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020.
"A Scoring Rule for Factor and Autoregressive Models Under Misspecification,"
Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," International Association of Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Domenico Sartore, 2018. "A scoring rule for factor and autoregressive models under misspecification," Working Papers 2018:18, Department of Economics, University of Venice "Ca' Foscari".
- Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019.
"Bayesian nonparametric sparse VAR models,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
- Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse VAR models," Papers 1608.02740, arXiv.org, revised Oct 2018.
- Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
- Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016.
"Sparse Graphical Vector Autoregression: A Bayesian Approach,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
- Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
- Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
- Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
- Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
- Korobilis, Dimitris, 2013.
"Bayesian forecasting with highly correlated predictors,"
Economics Letters, Elsevier, vol. 118(1), pages 148-150.
- Dimitris Korobilis, 2012. "Bayesian forecasting with highly correlated predictors," Working Papers 2012_12, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2012. "Bayesian Forecasting with Highly Correlated Predictors," Working Paper series 67_12, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2012. "Bayesian forecasting with highly correlated predictors," SIRE Discussion Papers 2012-80, Scottish Institute for Research in Economics (SIRE).
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Gefang, Deborah, 2014. "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage," International Journal of Forecasting, Elsevier, vol. 30(1), pages 1-11.
- Sandra Stankiewicz, 2015. "Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net," Working Paper Series of the Department of Economics, University of Konstanz 2015-12, Department of Economics, University of Konstanz.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018.
"Bayesian Vector Autoregressions,"
The Warwick Economics Research Paper Series (TWERPS)
1159, University of Warwick, Department of Economics.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," SciencePo Working papers Main hal-03458277, HAL.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Working Papers hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Documents de Travail de l'OFCE 2018-18, Observatoire Francais des Conjonctures Economiques (OFCE).
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian Vector Autoregressions," Discussion Papers 1808, Centre for Macroeconomics (CFM).
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Korobilis, Dimitris, 2013.
"Hierarchical shrinkage priors for dynamic regressions with many predictors,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
- Korobilis, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," MPRA Paper 30380, University Library of Munich, Germany.
- Dimitris Korobilis, 2011. "Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predictors," Working Paper series 21_11, Rimini Centre for Economic Analysis.
- KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," LIDAM Discussion Papers CORE 2011021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Karlsson, Sune, 2013.
"Forecasting with Bayesian Vector Autoregression,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897,
Elsevier.
- Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
More about this item
Keywords
Sparse Bayesian variable selection; Correlation prior; Probit model; Forecasting U.S. recessions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:51:y:2018:i:4:d:10.1007_s10614-017-9660-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.