IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/81568.html
   My bibliography  Save this paper

Model Averaging and its Use in Economics

Author

Listed:
  • Steel, Mark F. J.

Abstract

The method of model averaging has become an important tool to deal with model uncertainty, in particular in empirical settings with large numbers of potential models and relatively limited numbers of observations, as are common in economics. Model averaging is a natural response to model uncertainty in a Bayesian framework, so most of the paper deals with Bayesian model averaging. In addition, frequentist model averaging methods are also discussed. Numerical methods to implement these methods are explained, and I point the reader to some freely available computational resources. The main focus is on the problem of variable selection in linear regression models, but the paper also discusses other, more challenging, settings. Some of the applied literature is reviewed with particular emphasis on applications in economics. The role of the prior assumptions in Bayesian procedures is highlighted, and some recommendations for applied users are provided

Suggested Citation

  • Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:81568
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/81568/1/MPRA_paper_81568.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Branimir Jovanovic, 2013. "Growth Forecast Errors and Government Investment and Consumption Multipliers," CEIS Research Paper 301, Tor Vergata University, CEIS, revised 17 Dec 2013.
    2. Rodney W. Strachan & Herman K. Van Dijk, 2013. "Evidence On Features Of A Dsge Business Cycle Model From Bayesian Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(1), pages 385-402, February.
    3. William A. Brock & Steven N. Durlauf, 2015. "On Sturdy Policy Evaluation," The Journal of Legal Studies, University of Chicago Press, vol. 44(S2), pages 447-473.
    4. Martin Feldkircher & Stefan Zeugner, 2012. "The impact of data revisions on the robustness of growth determinants—a note on ‘determinants of economic growth: Will data tell?’," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(4), pages 686-694, June.
    5. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    6. repec:eee:eecrev:v:95:y:2017:i:c:p:142-167 is not listed on IDEAS
    7. Jesús Crespo Cuaresma & Martin Feldkircher, 2013. "Spatial Filtering, Model Uncertainty And The Speed Of Income Convergence In Europe," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 720-741, June.
    8. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
    9. Justin L. Tobias & Mingliang Li, 2004. "Returns to Schooling and Bayesian Model Averaging: A Union of Two Literatures," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 153-180, April.
    10. Steven N. Durlauf & Andros Kourtellos & Chih Ming Tan, 2012. "Is God in the details? A reexamination of the role of religion in economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1059-1075, November.
    11. Domenico Giannone & Michele Lenza & Lucrezia Reichlin, 2011. "Market Freedom and the Global Recession," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 59(1), pages 111-135, April.
    12. Rodney W. Strachan, 2009. "Comment on ‘Jointness of growth determinants’ by Gernot Doppelhofer and Melvyn Weeks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(2), pages 245-247, March.
    13. Tomas Havranek & Anna Sokolova, 2016. "Do Consumers Really Follow a Rule of Thumb? Three Thousand Estimates from 130 Studies Say "Probably Not"," Working Papers 2016/08, Czech National Bank, Research Department.
    14. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    15. Michael Jetter & Andrés Ramírez Hassan, 2015. "Want Export Diversification? Educate The Kids First," Economic Inquiry, Western Economic Association International, vol. 53(4), pages 1765-1782, October.
    16. Koop, Gary & Korobilis, Dimitris, 2016. "Model uncertainty in Panel Vector Autoregressive models," European Economic Review, Elsevier, vol. 81(C), pages 115-131.
    17. Tai-kuang Ho, 2015. "Looking for a Needle in a Haystack: Revisiting the Cross-country Causes of the 2008–9 Crisis by Bayesian Model Averaging," Economica, London School of Economics and Political Science, vol. 82(328), pages 813-840, October.
    18. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney, 2012. "Bayesian model averaging in the instrumental variable regression model," Journal of Econometrics, Elsevier, vol. 171(2), pages 237-250.
    19. David J. Nott & Robert Kohn, 2005. "Adaptive sampling for Bayesian variable selection," Biometrika, Biometrika Trust, vol. 92(4), pages 747-763, December.
    20. Christoph Hanck, 2016. "I just ran two trillion regressions," Economics Bulletin, AccessEcon, vol. 36(4), pages 2037-2042.
    21. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016. "Generalized Least Squares Model Averaging," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, November.
    22. Winford H. Masanjala & Chris Papageorgiou, 2008. "Rough and lonely road to prosperity: a reexamination of the sources of growth in Africa using Bayesian model averaging," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 671-682.
    23. Leamer, Edward E., 2016. "S-values and Bayesian weighted all-subsets regressions," European Economic Review, Elsevier, vol. 81(C), pages 15-31.
    24. Rose, Andrew K. & Spiegel, Mark M., 2011. "Cross-country causes and consequences of the crisis: An update," European Economic Review, Elsevier, vol. 55(3), pages 309-324, April.
    25. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    26. Camarero, Mariam & Forte, Anabel & Garcia-Donato, Gonzalo & Mendoza, Yurena & Ordoñez, Javier, 2015. "Variable selection in the analysis of energy consumption–growth nexus," Energy Economics, Elsevier, vol. 52(PA), pages 207-216.
    27. Mauro Bernardi & Leopoldo Catania, 2014. "The Model Confidence Set package for R," Papers 1410.8504, arXiv.org.
    28. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
    29. Enrique Moral-Benito, 2012. "Determinants of Economic Growth: A Bayesian Panel Data Approach," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 566-579, May.
    30. repec:spr:testjl:v:26:y:2017:i:2:d:10.1007_s11749-016-0516-0 is not listed on IDEAS
    31. Pierpaolo Battigalli & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2015. "Self-Confirming Equilibrium and Model Uncertainty," American Economic Review, American Economic Association, vol. 105(2), pages 646-677, February.
    32. Kourtellos, Andros & Marr, Christa & Tan, Chih Ming, 2016. "Robust determinants of intergenerational mobility in the land of opportunity," European Economic Review, Elsevier, vol. 81(C), pages 132-147.
    33. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    34. Ductor, Lorenzo & Leiva-Leon, Danilo, 2016. "Dynamics of global business cycle interdependence," Journal of International Economics, Elsevier, vol. 102(C), pages 110-127.
    35. Havranek, Tomas & Horvath, Roman & Irsova, Zuzana & Rusnak, Marek, 2015. "Cross-country heterogeneity in intertemporal substitution," Journal of International Economics, Elsevier, vol. 96(1), pages 100-118.
    36. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    37. StevenN. Durlauf & Andros Kourtellos & ChihMing Tan, 2008. "Are Any Growth Theories Robust?," Economic Journal, Royal Economic Society, vol. 118(527), pages 329-346, March.
    38. Roman Horvath & Eva Horvatova & Maria Siranova, 2017. "Financial Development, Rule of Law and Wealth Inequality: Bayesian Model Averaging Evidence," Working Papers 368, Leibniz Institut für Ost- und Südosteuropaforschung (Institute for East and Southeast European Studies).
    39. Onorante, Luca & Raftery, Adrian E., 2016. "Dynamic model averaging in large model spaces using dynamic Occam׳s window," European Economic Review, Elsevier, vol. 81(C), pages 2-14.
    40. Havranek, Tomas & Rusnak, Marek & Sokolova, Anna, 2017. "Habit formation in consumption: A meta-analysis," European Economic Review, Elsevier, vol. 95(C), pages 142-167.
    41. Devereux, John & Dwyer, Gerald P., 2016. "What determines output losses after banking crises?," Journal of International Money and Finance, Elsevier, vol. 69(C), pages 69-94.
    42. Leamer, Edward E, 1983. "Let's Take the Con Out of Econometrics," American Economic Review, American Economic Association, vol. 73(1), pages 31-43, March.
    43. Dasgupta, Amil & Leon-Gonzalez, Roberto & Shortland, Anja, 2011. "Regionality revisited: An examination of the direction of spread of currency crises," Journal of International Money and Finance, Elsevier, vol. 30(5), pages 831-848, September.
    44. Feldkircher, Martin & Huber, Florian, 2016. "The international transmission of US shocks—Evidence from Bayesian global vector autoregressions," European Economic Review, Elsevier, vol. 81(C), pages 167-188.
    45. Alex Lenkoski & Theo Eicher & Adrian Raftery, 2014. "Two-Stage Bayesian Model Averaging in Endogenous Variable Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 122-151.
    46. León-González, Roberto & Montolio, Daniel, 2015. "Endogeneity and panel data in growth regressions: A Bayesian model averaging approach," Journal of Macroeconomics, Elsevier, vol. 46(C), pages 23-39.
    47. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    48. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    49. Mathias Moser & Paul Hofmarcher, 2014. "Model Priors Revisited: Interaction Terms In Bma Growth Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 344-347, March.
    50. Enrique Moral‐Benito, 2016. "Growth Empirics in Panel Data Under Model Uncertainty and Weak Exogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 584-602, April.
    51. José Manuel Cordero & Manuel Muñiz & Cristina Polo, 2016. "The determinants of cognitive and non-cognitive educational outcomes: empirical evidence in Spain using a Bayesian approach," Applied Economics, Taylor & Francis Journals, vol. 48(35), pages 3355-3372, July.
    52. Christian Daude & Arne Nagengast & Jose Ramon Perea, 2016. "Productive capabilities: An empirical analysis of their drivers," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 25(4), pages 504-535, June.
    53. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    54. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    55. Vašíček, Bořek & Žigraiová, Diana & Hoeberichts, Marco & Vermeulen, Robert & Šmídková, Kateřina & de Haan, Jakob, 2017. "Leading indicators of financial stress: New evidence," Journal of Financial Stability, Elsevier, vol. 28(C), pages 240-257.
    56. Antonio Ciccone & Marek Jarociński, 2010. "Determinants of Economic Growth: Will Data Tell?," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(4), pages 222-246, October.
    57. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    58. William A. Brock & Steven N. Durlauf & Kenneth D. West, 2003. "Policy Evaluation in Uncertain Economic Environments," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 34(1), pages 235-322.
    59. David F. Hendry & Hans-Martin Krolzig, 2004. "We Ran One Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(5), pages 799-810, December.
    60. David F. Hendry & Hans-Martin Krolzig, 2004. "We Ran One Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(5), pages 799-810, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jsusta:v:10:y:2018:i:8:p:2801-:d:162455 is not listed on IDEAS

    More about this item

    Keywords

    Bayesian methods; Model uncertainty; Normal linear model; Prior specification; Robustness;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:81568. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.