IDEAS home Printed from https://ideas.repec.org/p/ete/kbiper/532152.html

The forecast combination puzzle: a simple theoretical explanation

Author

Listed:
  • Gerda Claeskens
  • Jan Magnus
  • Andrey Vasnev
  • Wendun Wang

Abstract

This paper offers a theoretical explanation for the stylized fact that forecast combinations with estimated optimal weights often perform poorly in applications. The properties of the forecast combination are typically derived under the assumption that the weights are fixed, while in practice they need to be estimated. If the fact that the weights are random rather than fixed is taken into account during the optimality derivation, then the forecast combination will be biased (even when the original forecasts are unbiased) and its variance is larger than in the fixed-weights case. In particular, there is no guarantee that the 'optimal' forecast combination will be better than the equal-weights case or even improve on the original forecasts. We provide the underlying theory, some special cases, and a numerical illustration.

Suggested Citation

  • Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2016. "The forecast combination puzzle: a simple theoretical explanation," Working Papers of Department of Decision Sciences and Information Management, Leuven 532152, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
  • Handle: RePEc:ete:kbiper:532152
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/retrieve/9b3a6fad-89a2-4e68-8cc5-bad8316e305b
    File Function: The forecast combination puzzle: a simple theoretical explanation
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:kbiper:532152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/KBI .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.