IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v76y2014i6p874-897.html

Concept-Based Bayesian Model Averaging and Growth Empirics

Author

Listed:
  • Jan R. Magnus
  • Wendun Wang

Abstract

type="main" xml:id="obes12068-abs-0001"> In specifying a regression equation, we need to specify which regressors to include, but also how these regressors are measured. This gives rise to two levels of uncertainty: concepts (level 1) and measurements within each concept (level 2). In this paper we propose a hierarchical weighted least squares (HWALS) method to address these uncertainties. We examine the effects of different growth determinants taking explicit account of the measurement problem in the growth regressions. We find that estimates produced by HWALS provide intuitive and robust explanations. We also consider approximation techniques which are useful when the number of variables is large or when computing time is limited.

Suggested Citation

  • Jan R. Magnus & Wendun Wang, 2014. "Concept-Based Bayesian Model Averaging and Growth Empirics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(6), pages 874-897, December.
  • Handle: RePEc:bla:obuest:v:76:y:2014:i:6:p:874-897
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/obes.2014.76.issue-6
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Hanck, 2016. "I just ran two trillion regressions," Economics Bulletin, AccessEcon, vol. 36(4), pages 2037-2042.
    2. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    3. Chen Ray-Bing & Chen Yi-Chi & Chu Chi-Hsiang & Lee Kuo-Jung, 2017. "On the determinants of the 2008 financial crisis: a Bayesian approach to the selection of groups and variables," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(5), pages 1-17, December.
    4. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    5. Jan R. Magnus & Wendun Wang, 2014. "Concept-Based Bayesian Model Averaging and Growth Empirics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(6), pages 874-897, December.
    6. Kourtellos, Andros & Marr, Christa & Tan, Chih Ming, 2016. "Robust determinants of intergenerational mobility in the land of opportunity," European Economic Review, Elsevier, vol. 81(C), pages 132-147.
    7. Andros Kourtellos & Alex Lenkoski & Kyriakos Petrou, 2020. "Measuring the strength of the theories of government size," Empirical Economics, Springer, vol. 59(5), pages 2185-2222, November.
    8. Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted average least squares (WALS) estimator," Tinbergen Institute Discussion Papers 22-022/III, Tinbergen Institute.
    9. Rolando Gonzales & Bert D’Espallier & Roy Mersland, 2021. "What Drives Profits in Savings Groups? Bayesian Data Mining Evidence from the SAVIX Database," Review of Development Finance Journal, Chartered Institute of Development Finance, vol. 11(2), pages 39-57.
    10. Sara D'Andrea, 2022. "Are there any robust determinants of growth in Europe? A Bayesian Model Averaging approach," International Economics, CEPII research center, issue 171, pages 143-173.
    11. Andros Kourtellos & Alex Lenkoski & Kyriakos Petrou, 2017. "Measuring the Strength of the Theories of Government Size," University of Cyprus Working Papers in Economics 11-2017, University of Cyprus Department of Economics.
    12. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:76:y:2014:i:6:p:874-897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.