IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v33y2017i4p894-914.html
   My bibliography  Save this article

Selecting exchange rate fundamentals by bootstrap

Author

Listed:
  • Ribeiro, Pinho J.

Abstract

Research shows that the predictive ability of economic fundamentals for exchange rates varies over time; it may be detected in some periods and disappear in others. This paper uses bootstrap-based methods to select time-specific conditioning information for the prediction of exchange rates. By employing measures of the predictive ability over time, along with statistical and economic evaluation criteria, we find that our approach based on pre-selecting and validating fundamentals across bootstrap replications leads to significant forecast improvements and economic gains relative to the random walk. The approach, known as bumping, selects parsimonious models that have out-of-sample predictive power at the one-month horizon; it is found to outperform various alternative methods, including Bayesian, bagging, and standard forecast combinations.

Suggested Citation

  • Ribeiro, Pinho J., 2017. "Selecting exchange rate fundamentals by bootstrap," International Journal of Forecasting, Elsevier, vol. 33(4), pages 894-914.
  • Handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:894-914
    DOI: 10.1016/j.ijforecast.2017.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207017300596
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Rapach & Jack Strauss, 2010. "Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 511-533.
    2. Bacchetta, Philippe & van Wincoop, Eric, 2013. "On the unstable relationship between exchange rates and macroeconomic fundamentals," Journal of International Economics, Elsevier, vol. 91(1), pages 18-26.
    3. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(2), pages 293-341.
    4. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, June.
    5. Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
    6. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    7. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    8. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    9. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    10. Charles Engel & Nelson C. Mark & Kenneth D. West, 2008. "Exchange Rate Models Are Not As Bad As You Think," NBER Chapters,in: NBER Macroeconomics Annual 2007, Volume 22, pages 381-441 National Bureau of Economic Research, Inc.
    11. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
    12. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    13. Fratzscher, Marcel & Rime, Dagfinn & Sarno, Lucio & Zinna, Gabriele, 2015. "The scapegoat theory of exchange rates: the first tests," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 1-21.
    14. Pasquale Della Corte & Lucio Sarno & Giulia Sestieri, 2012. "The Predictive Information Content of External Imbalances for Exchange Rate Returns: How Much Is It Worth?," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 100-115, February.
    15. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    18. Charles Engel & Nelson Mark & Kenneth West, 2015. "Factor Model Forecasts of Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 32-55.
    19. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    20. Yu-chin Chen & Kwok Ping Tsang, 2013. "What Does the Yield Curve Tell Us about Exchange Rate Predictability?," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 185-205, March.
    21. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    22. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    23. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    24. Philippe Bacchetta & Eric Van Wincoop, 2004. "A Scapegoat Model of Exchange-Rate Fluctuations," American Economic Review, American Economic Association, vol. 94(2), pages 114-118, May.
    25. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    26. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    27. Mark W. Watson, 2007. "How accurate are real-time estimates of output trends and gaps?," Economic Quarterly, Federal Reserve Bank of Richmond, issue Spr, pages 143-161.
    28. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    29. Sainan Jin & Liangjun Su & Aman Ullah, 2014. "Robustify Financial Time Series Forecasting with Bagging," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 575-605.
    30. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    31. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    32. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    33. Travis J. Berge, 2014. "Forecasting Disconnected Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 713-735, August.
    34. Jonathan Ingersoll & Ivo Welch, 2007. "Portfolio Performance Manipulation and Manipulation-proof Performance Measures," Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1503-1546, 2007 17.
    35. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    36. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    37. Cheung, Yin-Wong & Chinn, Menzie David, 2001. "Currency traders and exchange rate dynamics: a survey of the US market," Journal of International Money and Finance, Elsevier, vol. 20(4), pages 439-471, August.
    38. Yufeng Han, 2006. "Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model," Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 237-271.
    39. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768.
    40. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    41. Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
    42. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    43. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320.
    44. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    45. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:894-914. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.