IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Conjugate priors and variable selection for Bayesian quantile regression

  • Alhamzawi, Rahim
  • Yu, Keming
Registered author(s):

    Bayesian variable selection in quantile regression models is often a difficult task due to the computational challenges and non-availability of conjugate prior distributions. These challenges are rarely addressed via either penalized likelihood function or stochastic search variable selection. These methods typically use symmetric prior distributions such as a normal distribution or a Laplace distribution for regression coefficients, which may be suitable for median regression. However, an extreme quantile regression should have different regression coefficients from the median regression, and thus the priors for quantile regression should depend on the quantile. In this article an extension of the Zellners prior which allows for a conditional conjugate prior and quantile dependent prior on Bayesian quantile regression is proposed. Secondly, a novel prior based on percentage bend correlation for model selection is also used in Bayesian regression for the first time. Thirdly, a new variable selection method based on a Gibbs sampler is developed to facilitate the computation of the posterior probabilities. The proposed methods are justified mathematically and illustrated with both simulation and real data.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000345
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 64 (2013)
    Issue (Month): C ()
    Pages: 209-219

    as
    in new window

    Handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:209-219
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    2. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    3. repec:cup:cbooks:9780521608275 is not listed on IDEAS
    4. Richard H. Gerlach & Cathy W. S. Chen & Nancy Y. C. Chan, 2011. "Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 481-492, October.
    5. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.
    6. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    7. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    8. Hanson T. & Johnson W.O., 2002. "Modeling Regression Error With a Mixture of Polya Trees," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1020-1033, December.
    9. Yuan, Ming & Lin, Yi, 2005. "Efficient Empirical Bayes Variable Selection and Estimation in Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1215-1225, December.
    10. Yu, Keming & Stander, Julian, 2007. "Bayesian analysis of a Tobit quantile regression model," Journal of Econometrics, Elsevier, vol. 137(1), pages 260-276, March.
    11. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    12. Athanasios Kottas & Milovan Krnjajic, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319.
    13. repec:cup:cbooks:9780521845731 is not listed on IDEAS
    14. Rand Wilcox, 1994. "The percentage bend correlation coefficient," Psychometrika, Springer, vol. 59(4), pages 601-616, December.
    15. Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
    16. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    17. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:209-219. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.