IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/23-06.html
   My bibliography  Save this paper

Monitoring multicountry macroeconomic risk

Author

Listed:
  • Dimitris Korobilis

    (University of Glasgow, UK; Rimini Centre for Economic Analysis)

  • Maximilian Schröder

    (BI Norwegian Business School, Norway; Norges Bank, Norway)

Abstract

We propose a multicountry quantile factor augmented vector autoregression (QFAVAR) to model heterogeneities both across countries and across characteristics of the distributions of macroeconomic time series. The presence of quantile factors allows for summarizing these two heterogeneities in a parsimonious way. We develop two algorithms for posterior inference that feature varying level of trade-off between estimation precision and computational speed. Using monthly data for the euro area, we establish the good empirical properties of the QFAVAR as a tool for assessing the effects of global shocks on country-level macroeconomic risks. In particular, QFAVAR short-run tail forecasts are more accurate compared to a FAVAR with symmetric Gaussian errors, as well as univariate quantile autoregressions that ignore comovements among quantiles of macroeconomic variables. We also illustrate how quantile impulse response functions and quantile connectedness measures, resulting from the new model, can be used to implement joint risk scenario analysis.

Suggested Citation

  • Dimitris Korobilis & Maximilian Schröder, 2023. "Monitoring multicountry macroeconomic risk," Working Paper series 23-06, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:23-06
    as

    Download full text from publisher

    File URL: http://rcea.org/RePEc/pdf/wp23-06.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Khare, Kshitij & Hobert, James P., 2012. "Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 108-116.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Efrem Castelnuovo & Lorenzo Mori, 2022. "Uncertainty, Skewness and the Business Cycle - Through the MIDAS Lens," CAMA Working Papers 2022-69, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    6. Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
    7. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    8. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    9. Henrik Jensen & Ivan Petrella & Søren Hove Ravn & Emiliano Santoro, 2020. "Leverage and Deepening Business-Cycle Skewness," American Economic Journal: Macroeconomics, American Economic Association, vol. 12(1), pages 245-281, January.
    10. Ma, Shujie & Linton, Oliver & Gao, Jiti, 2021. "Estimation and inference in semiparametric quantile factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 295-323.
    11. Forni, Mario & Gambetti, Luca & Sala, Luca, 2021. "Downside and Upside Uncertainty Shocks," CEPR Discussion Papers 15881, C.E.P.R. Discussion Papers.
    12. Gorodnichenko, Yuriy & Ng, Serena, 2017. "Level and volatility factors in macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 52-68.
    13. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    14. Muggenthaler, Philip & Schroth, Joachim & Sun, Yiqiao, 2021. "The heterogeneous economic impact of the pandemic across euro area countries," Economic Bulletin Boxes, European Central Bank, vol. 5.
    15. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    16. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2021. "Multimodality In Macrofinancial Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 861-886, May.
    17. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    18. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    19. Haroon Mumtaz & Paolo Surico, 2015. "The Transmission Mechanism In Good And Bad Times," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1237-1260, November.
    20. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
    21. Geert Bekaert & Alexander Popov, 2019. "On the Link Between the Volatility and Skewness of Growth," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 67(4), pages 746-790, December.
    22. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Papers 2110.03411, arXiv.org.
    23. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    24. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    25. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    26. Haroon Mumtaz & Paolo Surico, 2015. "The Transmission Mechanism In Good And Bad Times," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1237-1260, November.
    27. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    28. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    29. Dimitris Korobilis & Maximilian Schroder, 2022. "Probabilistic quantile factor analysis," Papers 2212.10301, arXiv.org, revised Dec 2022.
    30. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    31. Tomohiro Ando & Jushan Bai, 2020. "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.
    32. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    33. Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
    34. Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    35. Haroon Mumtaz & Paolo Surico, 2012. "Evolving International Inflation Dynamics: World And Country-Specific Factors," Journal of the European Economic Association, European Economic Association, vol. 10(4), pages 716-734, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Korobilis & Maximilian Schroder, 2022. "Probabilistic quantile factor analysis," Papers 2212.10301, arXiv.org, revised Dec 2022.
    2. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    3. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    4. Iseringhausen, Martin & Petrella, Ivan & Theodoridis, Konstantinos, 2021. "Aggregate Skewness and the Business Cycle," Cardiff Economics Working Papers E2021/30, Cardiff University, Cardiff Business School, Economics Section.
    5. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    6. Chen, Bin-xia & Sun, Yan-lin, 2022. "The impact of VIX on China’s financial market: A new perspective based on high-dimensional and time-varying methods," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    7. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    8. Tibor Szendrei & Katalin Varga, 2020. "FISS – A Factor-based Index of Systemic Stress in the Financial System," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 3-34, March.
    9. Yanhong Feng & Dilong Xu & Pierre Failler & Tinghui Li, 2020. "Research on the Time-Varying Impact of Economic Policy Uncertainty on Crude Oil Price Fluctuation," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    10. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
    11. Krampe, J. & Paparoditis, E. & Trenkler, C., 2023. "Structural inference in sparse high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 234(1), pages 276-300.
    12. James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
    13. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    14. Joseph P Byrne & Ryuta Sakemoto & Bing Xu, 2020. "Commodity price co-movement: heterogeneity and the time-varying impact of fundamentals [Oil price shocks and the stock market: evidence from Japan]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 499-528.
    15. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    16. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    17. Sandra Eickmeier & Boris Hofmann, 2022. "What drives inflation? Disentangling demand and supply factors," BIS Working Papers 1047, Bank for International Settlements.
    18. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    19. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
    20. Angela Abbate & Sandra Eickmeier & Wolfgang Lemke & Massimiliano Marcellino, 2016. "The Changing International Transmission of Financial Shocks: Evidence from a Classical Time‐Varying FAVAR," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(4), pages 573-601, June.

    More about this item

    Keywords

    quantile VAR; MCMC; variational Bayes; dynamic factor model;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E66 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General Outlook and Conditions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:23-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Savioli (email available below). General contact details of provider: https://edirc.repec.org/data/rcfeait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.