IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.11551.html
   My bibliography  Save this paper

Let the Tree Decide: FABART A Non-Parametric Factor Model

Author

Listed:
  • Sofia Velasco

Abstract

This article proposes a novel framework that integrates Bayesian Additive Regression Trees (BART) into a Factor-Augmented Vector Autoregressive (FAVAR) model to forecast macro-financial variables and examine asymmetries in the transmission of oil price shocks. By employing nonparametric techniques for dimension reduction, the model captures complex, nonlinear relationships between observables and latent factors that are often missed by linear approaches. A simulation experiment comparing FABART to linear alternatives and a Monte Carlo experiment demonstrate that the framework accurately recovers the relationship between latent factors and observables in the presence of nonlinearities, while remaining consistent under linear data-generating processes. The empirical application shows that FABART substantially improves forecast accuracy for industrial production relative to linear benchmarks, particularly during periods of heightened volatility and economic stress. In addition, the model reveals pronounced sign asymmetries in the transmission of oil supply news shocks to the U.S. economy, with positive shocks generating stronger and more persistent contractions in real activity and inflation than the expansions triggered by negative shocks. A similar pattern emerges at the U.S. federal state level, where negative shocks lead to modest declines in employment compared to the substantially larger contractions observed after positive shocks.

Suggested Citation

  • Sofia Velasco, 2025. "Let the Tree Decide: FABART A Non-Parametric Factor Model," Papers 2506.11551, arXiv.org.
  • Handle: RePEc:arx:papers:2506.11551
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.11551
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
    3. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    4. Litterman, Robert B, 1986. "A Statistical Approach to Economic Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 1-4, January.
    5. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    6. Haroon Mumtaz & Michele Piffer, 2022. "Impulse response estimation via flexible local projections," Papers 2204.13150, arXiv.org.
    7. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    8. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    9. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    10. Berisha, Edmond & Chisadza, Carolyn & Clance, Matthew & Gupta, Rangan, 2021. "Income inequality and oil resources: Panel evidence from the United States," Energy Policy, Elsevier, vol. 159(C).
    11. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    12. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    13. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    14. Drossidis, Theo & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2024. "The distributional effects of oil supply news shocks," Economics Letters, Elsevier, vol. 240(C).
    15. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    16. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    17. Baumeister, Christiane & Liu, Philip & Mumtaz, Haroon, 2013. "Changes in the effects of monetary policy on disaggregate price dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 543-560.
    18. Haroon Mumtaz & Laura Sunder‐Plassmann & Angeliki Theophilopoulou, 2018. "The State‐Level Impact of Uncertainty Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1879-1899, December.
    19. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    20. Baumeister, Christiane & Huber, Florian & Marcellino, Massimiliano, 2024. "Risky Oil: It's All in the Tails," CEPR Discussion Papers 19129, C.E.P.R. Discussion Papers.
    21. Haroon Mumtaz, 2010. "Evolving UK macroeconomic dynamics: a time-varying factor augmented VAR," Bank of England working papers 386, Bank of England.
    22. Pascal Jacquinot & Mika Kuismanen & Ricardo Mestre & Martin Spitzer, 2009. "An Assessment of the Inflationary Impact of Oil Shocks in the Euro Area," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-84.
    23. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    24. Nathan S. Balke & Stephen P.A. Brown & Mine K. Yucel, 2002. "Oil Price Shocks and the U.S. Economy: Where Does the Asymmetry Originate?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 27-52.
    25. Hanno Kase & Leonardo Melosi & Matthias Rottner, 2025. "Estimating nonlinear heterogeneous agent models with neural networks," BIS Working Papers 1241, Bank for International Settlements.
    26. Pascal Jacquinot & Mika Kuismanen & Ricardo Mestre & Martin Spitzer, 2009. "An Assessment of the Inflationary Impact of Oil Shocks in the Euro Area," The Energy Journal, , vol. 30(1), pages 49-84, January.
    27. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2023. "Identification with External Instruments in Structural VARs," Journal of Monetary Economics, Elsevier, vol. 135(C), pages 1-19.
    28. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    29. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    30. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    31. Arce-Alfaro, Gabriel, 2025. "The economic implications of oil supply uncertainty," Energy Economics, Elsevier, vol. 145(C).
    32. Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
    33. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    34. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    35. Lorin Crawford & Kris C. Wood & Xiang Zhou & Sayan Mukherjee, 2018. "Bayesian Approximate Kernel Regression With Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1710-1721, October.
    36. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    37. Haroon Mumtaz & Paolo Surico, 2012. "Evolving International Inflation Dynamics: World And Country-Specific Factors," Journal of the European Economic Association, European Economic Association, vol. 10(4), pages 716-734, August.
    38. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    2. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Nov 2024.
    3. Martin Iseringhausen & Konstantinos Theodoridis, 2025. "A survey-based measure of asymmetric macroeconomic risk in the euro area," Working Papers 68, European Stability Mechanism, revised 11 Feb 2025.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    6. Miescu, Mirela & Mumtaz, Haroon & Theodoridis, Konstantinos, 2024. "Non-linear Dynamics of Oil Supply News Shocks," Cardiff Economics Working Papers E2024/18, Cardiff University, Cardiff Business School, Economics Section.
    7. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, April.
    8. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    9. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    10. Velasco, Sofia, 2024. "Asymmetries in the transmission of monetary policy shocks over the business cycle: a Bayesian Quantile Factor Augmented VAR," Working Paper Series 2983, European Central Bank.
    11. Zhang, Bo & Nguyen, Bao H. & Sun, Chuanwang, 2024. "Forecasting oil prices: Can large BVARs help?," Energy Economics, Elsevier, vol. 137(C).
    12. Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
    13. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    14. Pedro A. Lima & Carlos M. Carvalho & Hedibert F. Lopes & Andrew Herren, 2025. "Minnesota BART," Papers 2503.13759, arXiv.org.
    15. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    16. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    17. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    18. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    19. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    20. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.11551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.