IDEAS home Printed from https://ideas.repec.org/p/ctn/dpaper/2022-03.html

Big data forecasting of South African inflation

Author

Listed:
  • Byron Botha

    (Codera Analytics)

  • Rulof Burger

    (Department of Economics, University of Stellenbosch, Stellenbosch, 7601, South Africa.)

  • Kevin Kotze

    (School of Economics, University of Cape Town)

  • Neil Rankin

    (Predictive Insights, 3 Meson Street, Techno Park, Stellenbosch, 7600, South Africa.)

  • Daan Steenkamp

    (Codera Analytics and Research Fellow, Department of Economics, Stellenbosch University.)

Abstract

We investigate whether the use of statistical learning techniques and big data can enhance the accuracy of inflation forecasts. We make use of a large dataset for the disaggregated prices of consumption goods and services, which we partially reconstruct, and a large suite of different statistical learning and traditional time series models. We find that the statistical learning models are able to compete with most benchmarks over medium to longer horizons, despite the fact that we only have a relatively small sample of available data, but are usually inferior over shorter horizons. Our findings suggest that this result may be attributed to the ability of these models to make use of relevant information, when it is available, and may be particularly useful during periods of crisis, when deviations from the steady state are more persistent. We find that the accuracy of the central bank's near-term inflation forecasts compare favourably with those of other models, while the inclusion of off-model information, such as electricity tariff adjustments and other sources of within-month data, provides these models with a competitive advantage. Lastly, we also investigate the relative performance of the different models as we experienced the effects of the pandemic.

Suggested Citation

  • Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
  • Handle: RePEc:ctn:dpaper:2022-03
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/18DKBWXghYEcGJxozl1TNwQIlSWBoXlYv/view?usp=sharing
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023. "Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany," Discussion Papers 34/2023, Deutsche Bundesbank.
    2. Sengupta, Shovon & Chakraborty, Tanujit & Singh, Sunny Kumar, 2025. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," International Journal of Forecasting, Elsevier, vol. 41(3), pages 953-981.
    3. Cleaver, Cynan & Guest, Oliver & Steenkamp, Daan, 2025. "Introducing a new measure of inflation pressure for South Africa," MPRA Paper 126439, University Library of Munich, Germany.
    4. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ctn:dpaper:2022-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kevin Kotze (email available below). General contact details of provider: https://edirc.repec.org/data/seuctza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.