IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3776.html

Machine Learning Methods Economists Should Know About

Author

Listed:
  • Athey, Susan

    (Graduate School of Business, Stanford University, SIEPR, and NBER)

  • Imbens, Guido W.

    (Graduate School of Business and Department of Economics, Stanford)

Abstract

We discuss the relevance of the recent Machine Learning (ML) literature for economics and econometrics. First we discuss the differences in goals, methods and settings between the ML literature and the traditional econometrics and statistics literatures. Then we discuss some specific methods from the machine learning literature that we view as important for empirical researchers in economics. These include supervised learning methods for regression and classification, unsupervised learning methods, as well as matrix completion methods. Finally, we highlight newly developed methods at the intersection of ML and econometrics, methods that typically perform better than either off-the-shelf ML or more traditional econometric methods when applied to particular classes of problems, problems that include causal inference for average treatment effects, optimal policy estimation, and estimation of the counterfactual effect of price changes in consumer choice models.

Suggested Citation

  • Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3776
    as

    Download full text from publisher

    File URL: https://www.gsb.stanford.edu/gsb-cmis/gsb-cmis-download-auth/476281
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.