IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i4p791-806.html
   My bibliography  Save this article

Square-root lasso: pivotal recovery of sparse signals via conic programming

Author

Listed:
  • A. Belloni
  • V. Chernozhukov
  • L. Wang

Abstract

We propose a pivotal method for estimating high-dimensional sparse linear regression models, where the overall number of regressors p is large, possibly much larger than n, but only s regressors are significant. The method is a modification of the lasso, called the square-root lasso. The method is pivotal in that it neither relies on the knowledge of the standard deviation σ nor does it need to pre-estimate σ. Moreover, the method does not rely on normality or sub-Gaussianity of noise. It achieves near-oracle performance, attaining the convergence rate σ{(s/n) log p}-super-1/2 in the prediction norm, and thus matching the performance of the lasso with known σ. These performance results are valid for both Gaussian and non-Gaussian errors, under some mild moment restrictions. We formulate the square-root lasso as a solution to a convex conic programming problem, which allows us to implement the estimator using efficient algorithmic methods, such as interior-point and first-order methods. Copyright 2011, Oxford University Press.

Suggested Citation

  • A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:4:p:791-806
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr043
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:4:p:791-806. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: https://academic.oup.com/biomet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.