Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Ibarra-Ramírez Raúl & Gómez-Zamudio Luis M., 2017. "Are daily financial data useful for forecasting GDP? Evidence from Mexico," Working Papers 2017-17, Banco de México.
- Gómez-Zamudio, Luis M. & Ibarra, Raúl, 2017. "Are daily financial data useful for forecasting GDP? Evidence from Mexico," LSE Research Online Documents on Economics 123310, London School of Economics and Political Science, LSE Library.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jahan-Pavar, Mohammad R. & Lang, William J., 2024. "Which daily equity returns improve output forecasts?," Economics Letters, Elsevier, vol. 243(C).
- Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
- Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
- Lastunen, Jesse & Richiardi, Matteo, 2023.
"Forecasting recovery from COVID-19 using financial data: An application to Vietnam,"
World Development Perspectives, Elsevier, vol. 30(C).
- Jesse Lastunen & Matteo Richiardi, 2021. "Forecasting recovery from COVID-19 using financial data: An application to Viet Nam," WIDER Working Paper Series wp-2021-84, World Institute for Development Economic Research (UNU-WIDER).
- Richiardi, Matteo & Lastunen, Jesse, 2021. "Forecasting recovery from COVID-19 using financial data: an application to Viet Nam," Centre for Microsimulation and Policy Analysis Working Paper Series CEMPA4/21, Centre for Microsimulation and Policy Analysis at the Institute for Social and Economic Research.
More about this item
Keywords
; ; ; ;JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000425:015508. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LACEA (email available below). General contact details of provider: https://edirc.repec.org/data/laceaea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/col/000425/015508.html