IDEAS home Printed from https://ideas.repec.org/a/col/000425/015508.html

Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico

Author

Listed:
  • Raul Ibarra
  • Luis M. Gomez-Zamudio

Abstract

This article evaluates the use of nancial data sampled at high frequencies to improve short-term forecasts of quarterly GDP for Mexico. The model uses both quarterly and daily sampling frequencies while remaining parsimonious. In particular, the mixed data sampling (MIDAS) regression model is employed to deal with the multi-frequency problem. To preserve parsimony, factor analysis and forecast combination techniques are used to summarize the infor- mation contained in a data set containing 392 daily nancial series. Our ndings suggest that the MIDAS model incorporating daily nancial data leads to improvements in quarterly forecasts of GDP growth over traditional models that either rely only on quarterly macroeconomic data or average daily frequency data. The evidence suggests that this methodology improves the forecasts for the Mexican GDP notwithstanding its higher volatility relative to that of developed countries. Furthermore, we explore the ability of the MIDAS model to provide forecast updates for GDP growth (nowcasting).

Suggested Citation

  • Raul Ibarra & Luis M. Gomez-Zamudio, 2017. "Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203.
  • Handle: RePEc:col:000425:015508
    as

    Download full text from publisher

    File URL: http://economia.lacea.org/contents.htm
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahan-Pavar, Mohammad R. & Lang, William J., 2024. "Which daily equity returns improve output forecasts?," Economics Letters, Elsevier, vol. 243(C).
    2. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    3. Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
    4. Lastunen, Jesse & Richiardi, Matteo, 2023. "Forecasting recovery from COVID-19 using financial data: An application to Vietnam," World Development Perspectives, Elsevier, vol. 30(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000425:015508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LACEA (email available below). General contact details of provider: https://edirc.repec.org/data/laceaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.