IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201416.html
   My bibliography  Save this paper

Forecasting South African Inflation Using Non-Linear Models: A Weighted Loss-Based Evaluation

Author

Listed:
  • Patrick T. kanda

    (Department of Economics, University of Pretoria)

  • Mehmet Balcilar

    (Department of Economics, Eastern Mediterranean University, Famagusta, Turkish Republic of Northern Cyprus, via Mersin 10, Turkey)

  • Pejman Bahramian

    (Department of Economics, Eastern Mediterranean University, Famagusta, Turkish Republic of Northern Cyprus, via Mersin 10, Turkey)

  • Rangan Gupta

    (Department of Economics, University of Pretoria)

Abstract

The conduct of inflation targeting is heavily dependent on accurate inflation forecasts. Non-linear models have increasingly featured, along with linear counterparts, in the forecasting literature. In this study, we focus on forecasting South African infl ation by means of non-linear models and using a long historical dataset of seasonally-adjusted monthly inflation rates spanning from 1921:02 to 2013:01. For an emerging market economy such as South Africa, non-linearities can be a salient feature of such long data, hence the relevance of evaluating non-linear models' forecast performance. In the same vein, given the fact that 1969:10 marks the beginning of a protracted rising trend in South African inflation data, we estimate the models for an in-sample period of 1921:02-1966:09 and evaluate 24 step-ahead forecasts over an out-of-sample period of 1966:10-2013:01. In addition, using a weighted loss function specification, we evaluate the forecast performance of different non-linear models across various extreme economic environments and forecast horizons. In general, we find that no competing model consistently and significantly beats the LoLiMoT's performance in forecasting South African inflation.

Suggested Citation

  • Patrick T. kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2014. "Forecasting South African Inflation Using Non-Linear Models: A Weighted Loss-Based Evaluation," Working Papers 201416, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201416
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geoffrey Woglom, 2005. "Forecasting South African Inflation," South African Journal of Economics, Economic Society of South Africa, vol. 73(2), pages 302-320, June.
    2. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    3. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    4. Rangan Gupta, 2006. "FORECASTING THE SOUTH AFRICAN ECONOMY WITH VARs AND VECMs," South African Journal of Economics, Economic Society of South Africa, vol. 74(4), pages 611-628, December.
    5. Rangan Gupta & Rudi Steinbach, 2010. "Forecasting Key Macroeconomic Variables of the South African Economy: A Small Open Economy New Keynesian DSGE-VAR Model," Working Papers 201019, University of Pretoria, Department of Economics.
    6. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    7. Rangan Gupta & Faaiqa Hartley, 2013. "The Role of Asset Prices in Forecasting Inflation and Output in South Africa," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 12(3), pages 239-291, December.
    8. Cumby, Robert E. & Modest, David M., 1987. "Testing for market timing ability : A framework for forecast evaluation," Journal of Financial Economics, Elsevier, vol. 19(1), pages 169-189, September.
    9. Marcelle Chauvet & Elcyon C. R. Lima & Brisne Vasquez, 2002. "Forecasting Brazilian output in the presence of breaks: a comparison of linear and nonlinear models," FRB Atlanta Working Paper 2002-28, Federal Reserve Bank of Atlanta.
    10. Gupta, Rangan & Steinbach, Rudi, 2013. "A DSGE-VAR model for forecasting key South African macroeconomic variables," Economic Modelling, Elsevier, vol. 33(C), pages 19-33.
    11. Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
    12. Fabio Milani, 2012. "The Modeling of Expectations in Empirical DSGE Models: a Survey," Working Papers 121301, University of California-Irvine, Department of Economics.
    13. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    14. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    15. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    16. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    17. Rangan Gupta & Alain Kabundi, 2010. "Forecasting macroeconomic variables in a small open economy: a comparison between small- and large-scale models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 168-185.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Guangling 'Dave' Liu & Rangan Gupta & Eric Schaling, 2009. "A New-Keynesian DSGE model for forecasting the South African economy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 387-404.
    20. Mehmet Balcilar & Rangan Gupta & Kevin Kotze, 2013. "Forecasting South African Macroeconomic Data with a Nonlinear DSGE Model," Working Papers 201313, University of Pretoria, Department of Economics.
    21. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    22. Sami Alpanda & Kevin Kotzé & Geoffrey Woglom, 2011. "Forecasting Performance Of An Estimated Dsge Model For The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 79(1), pages 50-67, March.
    23. Mr. J. H. Green, 1996. "Inflation Targeting: Theory and Policy Implications," IMF Working Papers 1996/065, International Monetary Fund.
    24. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    25. repec:lmu:muenar:19719 is not listed on IDEAS
    26. Jp van den Heever, 2001. "A Note On Inflation Targeting In South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 69(1), pages 168-177, March.
    27. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    28. John H. Green, 1996. "Inflation Targeting: Theory and Policy Implications," IMF Staff Papers, Palgrave Macmillan, vol. 43(4), pages 779-795, December.
    29. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ipg:wpaper:2014-474 is not listed on IDEAS
    2. repec:ipg:wpaper:2014-516 is not listed on IDEAS
    3. repec:ipg:wpaper:2014-462 is not listed on IDEAS
    4. Franz Ruch & Mehmet Balcilar & Rangan Gupta & Mampho P. Modise, 2020. "Forecasting core inflation: the case of South Africa," Applied Economics, Taylor & Francis Journals, vol. 52(28), pages 3004-3022, June.
    5. repec:ipg:wpaper:2014-548 is not listed on IDEAS
    6. repec:ipg:wpaper:2014-475 is not listed on IDEAS
    7. repec:ipg:wpaper:2014-492 is not listed on IDEAS
    8. repec:ipg:wpaper:2014-562 is not listed on IDEAS
    9. repec:ipg:wpaper:2014-468 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ipg:wpaper:2014-471 is not listed on IDEAS
    2. Annari De Waal & Rene頖an Eyden & Rangan Gupta, 2015. "Do we need a global VAR model to forecast inflation and output in South Africa?," Applied Economics, Taylor & Francis Journals, vol. 47(25), pages 2649-2670, May.
    3. Rangan Gupta & Patrick T. Kanda & Mampho P. Modise & Alessia Paccagnini, 2015. "DSGE model-based forecasting of modelled and nonmodelled inflation variables in South Africa," Applied Economics, Taylor & Francis Journals, vol. 47(3), pages 207-221, January.
    4. Rangan Gupta & Patrick T. kanda & Mampho P. Modise & Alessia Paccagnini, 2013. "DSGE Model-Based Forecasting of Modeled and Non-Modeled Inflation Variables in South Africa," Working Papers 201374, University of Pretoria, Department of Economics.
    5. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    6. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    7. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    8. Balcilar, Mehmet & Gupta, Rangan & Kotzé, Kevin, 2015. "Forecasting macroeconomic data for an emerging market with a nonlinear DSGE model," Economic Modelling, Elsevier, vol. 44(C), pages 215-228.
    9. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.
    10. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo, vol. 56(2), pages 192-220, June.
    11. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    12. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    13. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    14. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    15. Mirriam Chitalu Chama-Chiliba & Rangan Gupta & Nonophile Nkambule & Naomi Tlotlego, 2011. "Forecasting Key Macroeconomic Variables of the South African Economy Using Bayesian Variable Selection," Working Papers 201132, University of Pretoria, Department of Economics.
    16. Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski, Economic Research Department.
    17. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
    18. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, October.
    19. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
    20. Daniel Grenouilleau, 2006. "The Stacked Leading Indicators Dynamic Factor Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping," European Economy - Economic Papers 2008 - 2015 249, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    21. Knotek, Edward S. & Zaman, Saeed, 2019. "Financial nowcasts and their usefulness in macroeconomic forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.

    More about this item

    Keywords

    Inflation; forecasting; non-linear models; weighted loss function; South Africa;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201416. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/decupza.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.