IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v47y2015i22p2259-2277.html

The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US

Author

Listed:
  • Mehmet Balcilar
  • Rangan Gupta
  • Stephen M. Miller

Abstract

This article provides out-of-sample forecasts of linear and nonlinear models of US and four Census subregions’ housing prices. The forecasts include the traditional point forecasts, but also include interval and density forecasts, of the housing price distributions. The nonlinear smooth-transition autoregressive model outperforms the linear autoregressive model in point forecasts at longer horizons, but the linear autoregressive and nonlinear smooth-transition autoregressive models perform equally at short horizons. In addition, we generally do not find major differences in performance for the interval and density forecasts between the linear and nonlinear models. Finally, in a dynamic 25-step ex-ante and interval forecasting design, we, once again, do not find major differences between the linear and nonlinear models. In sum, we conclude that when forecasting regional housing prices in the United States, generally the additional costs associated with nonlinear forecasts outweigh the benefits for forecasts only a few months into the future.

Suggested Citation

  • Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
  • Handle: RePEc:taf:applec:v:47:y:2015:i:22:p:2259-2277
    DOI: 10.1080/00036846.2015.1005814
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2015.1005814
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2015.1005814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyriazakou, Eleni & Panagiotidis, Theodore, 2017. "Causality analysis of the Canadian city house price indices: A cross-sample validation approach," The Journal of Economic Asymmetries, Elsevier, vol. 16(C), pages 42-52.
    2. repec:ipg:wpaper:2014-471 is not listed on IDEAS
    3. Laurynas Narusevicius & Tomas Ramanauskas & Laura Gudauskaitė & Tomas Reichenbachas, 2019. "Lithuanian house price index: modelling and forecasting," Bank of Lithuania Occasional Paper Series 28, Bank of Lithuania.
    4. Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021. "High-Frequency Volatility Forecasting of US Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
    5. George Milunovich, 2020. "Forecasting Australia's real house price index: A comparison of time series and machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1098-1118, November.
    6. Alessandra Canepa & Emilio Zanetti Chini & Huthaifa Alqaralleh, 2022. "Global Cities and Local Challenges: Booms and Busts in the London Real Estate Market," The Journal of Real Estate Finance and Economics, Springer, vol. 64(1), pages 1-29, January.
    7. N. Kundan Kishor, 2025. "Forecasting House Prices: The Role of Fundamentals, Credit Conditions, and Supply Indicators," The Journal of Real Estate Finance and Economics, Springer, vol. 70(1), pages 121-143, January.
    8. McGurk, Zachary, 2020. "US real estate inflation prediction: Exchange rates and net foreign assets," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 53-66.
    9. Bouras, Christos & Christou, Christina & Gupta, Rangan & Lesame, Keagile, 2023. "Forecasting state- and MSA-level housing returns of the US: The role of mortgage default risks," Research in International Business and Finance, Elsevier, vol. 65(C).
    10. Patrick T. Kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2016. "Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation," Applied Economics, Taylor & Francis Journals, vol. 48(26), pages 2412-2427, June.
    11. Christophe Andre & Rangan Gupta & John W. Muteba Mwamba, 2016. "Are Housing Price Cycles Asymmetric? Evidence from the US States and Metropolitan Areas," Working Papers 201635, University of Pretoria, Department of Economics.
    12. Alqaralleh, Huthaifa & Canepa, Alessandra, 2020. "Housing market cycles in large urban areas," Economic Modelling, Elsevier, vol. 92(C), pages 257-267.
    13. Alessandra Canepa & Emilio Zanetti Chini & Huthaifa Alqaralleh, 2020. "Global Cities and Local Housing Market Cycles," The Journal of Real Estate Finance and Economics, Springer, vol. 61(4), pages 671-697, November.
    14. Mobeen Ur Rehman & Sajid Ali & Syed Jawad Hussain Shahzad, 2020. "Asymmetric Nonlinear Impact of Oil Prices and Inflation on Residential Property Prices: a Case of US, UK and Canada," The Journal of Real Estate Finance and Economics, Springer, vol. 61(1), pages 39-54, June.
    15. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    16. Rangan Gupta & Chi Keung Marco Lau & Wendy Nyakabawo, 2018. "Predicting Aggregate and State-Level US House Price Volatility: The Role of Sentiment," Working Papers 201866, University of Pretoria, Department of Economics.
    17. Balcilar, Mehmet & Gupta, Rangan & Sousa, Ricardo M. & Wohar, Mark E., 2021. "Linking U.S. State-level housing market returns, and the consumption-(Dis)Aggregate wealth ratio," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 779-810.
    18. Luis A. Gil-Alana & Rangan Gupta & Fernando Perez de Gracia, 2016. "Persistence, mean reversion and non-linearities in the US housing prices over 1830--2013," Applied Economics, Taylor & Francis Journals, vol. 48(34), pages 3244-3252, July.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:47:y:2015:i:22:p:2259-2277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.