High-Frequency Volatility Forecasting of US Housing Markets
Author
Abstract
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a for a similarly titled item that would be available.
Other versions of this item:
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021. "High-Frequency Volatility Forecasting of US Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- is not listed on IDEAS
- Goodness C. Aye & Christina Christou & Rangan Gupta & Christis Hassapis, 2024.
"High-Frequency Contagion between Aggregate and Regional Housing Markets of the United States with Financial Assets: Evidence from Multichannel Tests,"
The Journal of Real Estate Finance and Economics, Springer, vol. 69(2), pages 253-276, August.
- Goodness C. Aye & Christina Christou & Rangan Gupta & Christis Hassapis, 2021. "High-Frequency Contagion between Aggregate and Regional Housing Markets of the United States with Financial Assets: Evidence from Multichannel Tests," Working Papers 202159, University of Pretoria, Department of Economics.
- N. Kundan Kishor, 2025.
"Forecasting House Prices: The Role of Fundamentals, Credit Conditions, and Supply Indicators,"
The Journal of Real Estate Finance and Economics, Springer, vol. 70(1), pages 121-143, January.
- Kishor, N. Kundan, 2023. "Forecasting House Prices: The Role of Fundamentals, Credit Conditions, and Supply Indicators," MPRA Paper 116819, University Library of Munich, Germany.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022.
"Forecasting realized volatility of international REITs: The role of realized skewness and realized kurtosis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 303-315, March.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of International REITs: The Role of Realized Skewness and Realized Kurtosis," Working Papers 202114, University of Pretoria, Department of Economics.
- Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023.
"Forecasting international REITs volatility: the role of oil-price uncertainty,"
The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
- Jiqian Wang & Rangan Gupta & Oguzhan Cepni & Feng Ma, 2021. "Forecasting International REITs Volatility: The Role of Oil-Price Uncertainty," Working Papers 202173, University of Pretoria, Department of Economics.
- Afees A. Salisu & Ahamuefula E. Ogbonna & Elie Bouri & Rangan Gupta, 2024. "Climate Risks and Prediction of Sectoral REITs Volatility: International Evidence," Working Papers 202434, University of Pretoria, Department of Economics.
- Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021.
"Do oil-price shocks predict the realized variance of U.S. REITs?,"
Energy Economics, Elsevier, vol. 104(C).
- Matteo Bonato & Rangan Gupta & Christian Pierdzioch, 2020. "Do Oil-Price Shocks Predict the Realized Variance of U.S. REITs?," Working Papers 2020100, University of Pretoria, Department of Economics.
- Rangan Gupta & Damien Moodley, 2023. "Housing Search Activity and Quantiles-Based Predictability of Housing Price Movements in the United States," Working Papers 202335, University of Pretoria, Department of Economics.
More about this item
Keywords
; ; ; ;JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2019-11-04 (Econometric Time Series)
- NEP-FOR-2019-11-04 (Forecasting)
- NEP-MST-2019-11-04 (Market Microstructure)
- NEP-ORE-2019-11-04 (Operations Research)
- NEP-RMG-2019-11-04 (Risk Management)
- NEP-URE-2019-11-04 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201977. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/pre/wpaper/201977.html