Forecasting international REITs volatility: the role of oil-price uncertainty
Author
Abstract
Suggested Citation
DOI: 10.1080/1351847X.2022.2137422
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Jiqian Wang & Rangan Gupta & Oguzhan Cepni & Feng Ma, 2021. "Forecasting International REITs Volatility: The Role of Oil-Price Uncertainty," Working Papers 202173, University of Pretoria, Department of Economics.
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Nazlioglu, Saban & Gormus, N. Alper & Soytas, Uğur, 2016. "Oil prices and real estate investment trusts (REITs): Gradual-shift causality and volatility transmission analysis," Energy Economics, Elsevier, vol. 60(C), pages 168-175.
- Marfatia, Hardik A. & Gupta, Rangan & Cakan, Esin, 2017.
"The international REIT’s time-varying response to the U.S. monetary policy and macroeconomic surprises,"
The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 640-653.
- Hardik A. Marfatia & Rangan Gupta & Esin Cakan, 2017. "The International REIT's Time-Varying Response to the U.S. Monetary Policy and Macroeconomic Surprises," Working Papers 201712, University of Pretoria, Department of Economics.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022.
"Forecasting realized volatility of international REITs: The role of realized skewness and realized kurtosis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 303-315, March.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of International REITs: The Role of Realized Skewness and Realized Kurtosis," Working Papers 202114, University of Pretoria, Department of Economics.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021.
"High-Frequency Volatility Forecasting of US Housing Markets,"
The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2019. "High-Frequency Volatility Forecasting of US Housing Markets," Working Papers 201977, University of Pretoria, Department of Economics.
- John Y. Campbell, 2008.
"Viewpoint: Estimating the equity premium,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
- John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics, Canadian Economics Association, vol. 41(1), pages 1-21, February.
- Hardik A. Marfatia & Rangan Gupta & Keagile Lesame, 2021.
"Dynamic Impact of Unconventional Monetary Policy on International REITs,"
JRFM, MDPI, vol. 14(9), pages 1-19, September.
- Hardik A. Marfatia & Rangan Gupta & Keagile Lesame, 2020. "Dynamic Impact of Unconventional Monetary Policy on International REITs," Working Papers 202020, University of Pretoria, Department of Economics.
- Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
- Omokolade Akinsomi & Goodness C. Aye & Vassilios Babalos & Fotini Economou & Rangan Gupta, 2016. "Erratum to: Real estate returns predictability revisited: novel evidence from the US REITs market," Empirical Economics, Springer, vol. 51(3), pages 1191-1191, November.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Ben S. Bernanke, 1983.
"Irreversibility, Uncertainty, and Cyclical Investment,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 98(1), pages 85-106.
- Ben S. Bernanke, 1980. "Irreversibility, Uncertainty, and Cyclical Investment," NBER Working Papers 0502, National Bureau of Economic Research, Inc.
- He, Chi-Wei & Chang, Kuang-Liang & Wang, Yung-Jang, 2020. "Does the jump risk in the US market matter for Japan and Hong Kong? An investigation on the REIT market," Finance Research Letters, Elsevier, vol. 34(C).
- Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost & Marco C. Sammon & Tasaneeya Viratyosin, 2020. "The Unprecedented Stock Market Impact of COVID-19," NBER Working Papers 26945, National Bureau of Economic Research, Inc.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Yuichiro Kawaguchi & Jarjisu Sa-Aadu & James D. Shilling, 2017. "REIT Stock Price Volatility and the Effects of Leverage," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 45(2), pages 452-477, April.
- Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020.
"The predictive power of oil price shocks on realized volatility of oil: A note,"
Resources Policy, Elsevier, vol. 69(C).
- Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2020. "The Predictive Power of Oil Price Shocks on Realized Volatility of Oil: A Note," Working Papers 202044, University of Pretoria, Department of Economics.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
- Ivelina Pavlova & Jang Hyung Cho & A.M. Parhizgari & William G. Hardin, 2014. "Long memory in REIT volatility and changes in the unconditional mean: a modified FIGARCH approach," Journal of Property Research, Taylor & Francis Journals, vol. 31(4), pages 315-332, December.
- John Cotter & Simon Stevenson, 2008.
"Modeling Long Memory in REITs,"
Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
- Cotter, John & Stevenson, Simon, 2007. "Modeling Long Memory in REITs," MPRA Paper 3500, University Library of Munich, Germany.
- John Cotter, 2011. "Modelling Long Memory in REITs," Working Papers 200614, Geary Institute, University College Dublin.
- John Cotter & Simon Stevenson, 2011. "Modeling Long Memory in REITs," Papers 1103.5414, arXiv.org.
- Omokolade Akinsomi & Goodness C. Aye & Vassilios Babalos & Fotini Economou & Rangan Gupta, 2016.
"Real estate returns predictability revisited: novel evidence from the US REITs market,"
Empirical Economics, Springer, vol. 51(3), pages 1165-1190, November.
- Kola Akinsomi & Goodness C. Aye & Vassilios Babalos & Fotini Economou & Rangan Gupta, 2014. "Real Estate Returns Predictability Revisited: Novel Evidence from the US REITs Market," Working Papers 201454, University of Pretoria, Department of Economics.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Li, Jie & Li, Guangzhong & Zhou, Yinggang, 2015. "Do securitized real estate markets jump? International evidence," Pacific-Basin Finance Journal, Elsevier, vol. 31(C), pages 13-35.
- Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
- Jian Zhou & Zhixin Kang, 2011. "A Comparison of Alternative Forecast Models of REIT Volatility," The Journal of Real Estate Finance and Economics, Springer, vol. 42(3), pages 275-294, April.
- Nazlioglu, Saban & Gupta, Rangan & Gormus, Alper & Soytas, Ugur, 2020.
"Price and volatility linkages between international REITs and oil markets,"
Energy Economics, Elsevier, vol. 88(C).
- Saban Nazlioglu & Rangan Gupta & Alper Gormus & Ugur Soytas, 2019. "Price and Volatility Linkages between International REITs and Oil Markets," Working Papers 201954, University of Pretoria, Department of Economics.
- John Y. Campbell, 2007.
"Estimating the Equity Premium,"
NBER Working Papers
13423, National Bureau of Economic Research, Inc.
- Campbell, John, 2008. "Estimating the Equity Premium," Scholarly Articles 3196339, Harvard University Department of Economics.
- Chan, Joshua C.C. & Grant, Angelia L., 2016.
"Modeling energy price dynamics: GARCH versus stochastic volatility,"
Energy Economics, Elsevier, vol. 54(C), pages 182-189.
- Joshua C.C. Chan & Angelia L. Grant, 2015. "Modeling energy price dynamics: GARCH versus stochastic volatility," CAMA Working Papers 2015-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Wang, Jiqian & Huang, Yisu & Ma, Feng & Chevallier, Julien, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Energy Economics, Elsevier, vol. 91(C).
- Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
- Feng Ma & Chao Liang & Qing Zeng & Haibo Li, 2021. "Jumps and oil futures volatility forecasting: a new insight," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 853-863, May.
- Don Bredin & Gerard O’Reilly & Simon Stevenson, 2007. "Monetary Shocks and REIT Returns," The Journal of Real Estate Finance and Economics, Springer, vol. 35(3), pages 315-331, October.
- Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
- Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
- Devaney, Michael, 2001. "Time varying risk premia for real estate investment trusts: A GARCH-M model," The Quarterly Review of Economics and Finance, Elsevier, vol. 41(3), pages 335-346.
- Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salisu, Afees A. & Ogbonna, Ahamuefula E. & Gupta, Rangan & Bouri, Elie, 2024.
"Energy-related uncertainty and international stock market volatility,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 280-293.
- Afees A. Salisu & Ahamuefula E. Ogbonna & Rangan Gupta & Elie Bouri, 2023. "Energy-Related Uncertainty and International Stock Market Volatility," Working Papers 202336, University of Pretoria, Department of Economics.
- Zeng, Qing & Zhang, Jixiang & Zhong, Juandan, 2024. "China's futures market volatility and sectoral stock market volatility prediction," Energy Economics, Elsevier, vol. 132(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021.
"Do oil-price shocks predict the realized variance of U.S. REITs?,"
Energy Economics, Elsevier, vol. 104(C).
- Matteo Bonato & Rangan Gupta & Christian Pierdzioch, 2020. "Do Oil-Price Shocks Predict the Realized Variance of U.S. REITs?," Working Papers 2020100, University of Pretoria, Department of Economics.
- Guo, Yangli & Li, Pan & Wu, Hanlin, 2023. "Jumps in the Chinese crude oil futures volatility forecasting: New evidence," Energy Economics, Elsevier, vol. 126(C).
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022.
"Forecasting realized volatility of international REITs: The role of realized skewness and realized kurtosis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 303-315, March.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of International REITs: The Role of Realized Skewness and Realized Kurtosis," Working Papers 202114, University of Pretoria, Department of Economics.
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- Ding, Hui & Huang, Yisu & Wang, Jiqian, 2023. "Have the predictability of oil changed during the COVID-19 pandemic: Evidence from international stock markets," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023.
"Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.
- Afees A. Salisu & Rangan Gupta & Elie Bouri, 2022. "Testing the Forecasting Power of Global Economic Conditions for the Volatility of International REITs using a GARCH-MIDAS Approach," Working Papers 202211, University of Pretoria, Department of Economics.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
- Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
- Shixuan Wang & Rangan Gupta & Matteo Bonato & Oguzhan Cepni, 2022. "The Effects of Conventional and Unconventional Monetary Policy Shocks on US REITs Moments: Evidence from VARs with Functional Shocks," Working Papers 202219, University of Pretoria, Department of Economics.
- Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
- Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
- He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
- Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
More about this item
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:29:y:2023:i:14:p:1579-1597. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.