IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202044.html

The Predictive Power of Oil Price Shocks on Realized Volatility of Oil: A Note

Author

Listed:
  • Riza Demirer

    (Department of Economics and Finance, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1102, USA)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, 0002, South Africa)

  • Christian Pierdzioch

    (Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, Germany)

  • Syed Jawad Hussain Shahzad

    (Montpellier Business School, Montpellier, France; South Ural State University, Chelyabinsk, Russian Federation)

Abstract

This paper examines the predictive power of oil supply, demand and risk shocks over the realized volatility of intraday oil returns. Utilizing the heterogeneous autoregressive realized volatility (HAR-RV) framework, we show that all shock terms on their own, and particularly financial market driven risk shocks, significantly improve the forecasting performance of the benchmark HAR-RV model, both in- and out-of-sample. Incorporating all three shocks simultaneously in the HAR-RV model yields the largest forecasting gains compared to all other variants of the HAR-RV model, consistently at short-, medium-, and long forecasting horizons. The findings highlight the predictive information captured by disentangled oil price shocks in accurately forecasting oil market volatility, offering a valuable opening for investors and corporations to monitor oil market volatility using information on traded assets at high frequency.

Suggested Citation

  • Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2020. "The Predictive Power of Oil Price Shocks on Realized Volatility of Oil: A Note," Working Papers 202044, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202044
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.