IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting GDP at the Regional Level with Many Predictors

  • Robert Lehmann

    ()

  • Klaus Wohlrabe

    ()

In this paper, we assess the accuracy of macroeconomic forecasts at the regional level using a unique data set at quarterly frequency. We forecast gross domestic product (GDP) for two German states (Free State of Saxony and Baden-Württemberg) and Eastern Germany. We overcome the problem of a ’data-poor environment’ at the sub-national level by including more than 300 international, national and regional indicators. We calculate single–indicator, multi–indicator and pooled forecasts. Our results show that we can significantly increase forecast accuracy compared to an autoregressive benchmark model, both for short- and long-term predictions. Furthermore, our best leading indicators describe the specific regional economic structure better than other indicators.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cesifo-group.de/portal/page/portal/DocBase_Content/WP/WP-CESifo_Working_Papers/wp-cesifo-2012/wp-cesifo-2012-10/cesifo1_wp3956.pdf
Download Restriction: no

Paper provided by CESifo Group Munich in its series CESifo Working Paper Series with number 3956.

as
in new window

Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:ces:ceswps:_3956
Contact details of provider: Postal: Poschingerstrasse 5, 81679 Munich
Phone: +49 (89) 9224-0
Fax: +49 (89) 985369
Web page: http://www.cesifo.de
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kai Carstensen & Klaus Wohlrabe & Christina Ziegler, 2011. "Predictive Ability of Business Cycle Indicators under Test - A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 231(1), pages 82-106, February.
  2. Hans-Ulrich Brautzsch & Udo Ludwig, 2002. "Vierteljährliche Entstehungsrechnung des Bruttoinlandsprodukts für Ostdeutschland: Sektorale Bruttowertschöpfung," IWH Discussion Papers 164, Halle Institute for Economic Research.
  3. Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print peer-00844811, HAL.
  4. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland – Teil II: Die Zyklendatierung," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 62(14), pages 24-31, 07.
  5. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  6. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  7. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2013. "Pooling Versus Model Selection For Nowcasting Gdp With Many Predictors: Empirical Evidence For Six Industrialized Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 392-411, 04.
  8. Katja Drechsel & Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
  9. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  10. Katja Drechsel & Laurent Maurin, 2011. "Flow of conjunctural information and forecast of euro area economic activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 336-354, April.
  11. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
  12. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro-area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
  13. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511.
  14. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland – Teil I: Die Datenlage," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 62(13), pages 18-24, 07.
  15. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  16. Christian Dreger & Konstantin A. Kholodilin, 2007. "Prognosen der regionalen Konjunkturentwicklung," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 76(4), pages 47-55.
  17. Konstantin A. Kholodilin & Boriss Siliverstovs, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 226(3), pages 234-259, May.
  18. Giorgio Bodo & Roberto Golinelli & Giuseppe Parigi, 2000. "Forecasting Industrial Production in the Euro Area," Temi di discussione (Economic working papers) 370, Bank of Italy, Economic Research and International Relations Area.
  19. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
  20. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
  21. Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
  22. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638009, HAL.
  23. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  24. Robert Lehmann & Wolf-Dietmar Speich & Roman Straube & Gerit Vogt, 2010. "Funktioniert der ifo Konjunkturtest auch in wirtschaftlichen Krisenzeiten? : eine Analyse der Zusammenhänge zwischen ifo Geschäftsklima und amtlichen Konjunkturdaten für Sachsen," ifo Dresden berichtet, Ifo Institute for Economic Research at the University of Munich, vol. 17(03), pages 8-14, 06.
  25. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-75, November.
  26. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  27. Bandholz, Harm & Funke, Michael, 2003. "Die Konstruktion und Schätzung eines Konjunkturfrühindikators für Hamburg," Wirtschaftsdienst – Zeitschrift für Wirtschaftspolitik (1998 - 2007), ZBW – German National Library of Economics / Leibniz Information Centre for Economics, vol. 83(8), pages 540-548.
  28. Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2008. "Regional unemployment forecasts with spatial interdependencies," IAB Discussion Paper 200828, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
  29. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  30. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
  31. Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, , vol. 30(2), pages 100-119, April.
  32. Gerit Vogt, 2010. "VAR-Prognose-Pooling : ein Ansatz zur Verbesserung der Informationsgrundlage der ifo Dresden Konjunkturprognosen," ifo Dresden berichtet, Ifo Institute for Economic Research at the University of Munich, vol. 17(02), pages 32-40, 04.
  33. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  34. Schumacher, Christian, 2009. "Factor forecasting using international targeted predictors: the case of German GDP," Discussion Paper Series 1: Economic Studies 2009,10, Deutsche Bundesbank, Research Centre.
  35. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
  36. Joachim Ragnitz, 2009. "East Germany Today: Successes and Failures," CESifo DICE Report, Ifo Institute for Economic Research at the University of Munich, vol. 7(4), pages 51-58, 01.
  37. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  38. Wenzel, Lars, 2013. "Forecasting regional growth in Germany: A panel approach using business survey data," HWWI Research Papers 133, Hamburg Institute of International Economics (HWWI).
  39. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German L�nder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
  40. Wolfgang Nierhaus, 2007. "Vierteljährliche volkswirtschaftliche Gesamtrechnungen für Sachsen mit Hilfe temporaler Disaggregation," ifo Dresden berichtet, Ifo Institute for Economic Research at the University of Munich, vol. 14(04), pages 24-36, 08.
  41. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, Ifo Institute for Economic Research at the University of Munich, number 36.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_3956. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julio Saavedra)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.