IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/46765.html
   My bibliography  Save this paper

Sectoral gross value-added forecasts at the regional level: Is there any information gain?

Author

Listed:
  • Lehmann, Robert
  • Wohlrabe, Klaus

Abstract

In this paper, we ask whether it is possible to forecast gross-value added (GVA) and its sectoral sub-components at the regional level. We are probably the first who evaluate sectoral forecasts at the regional level using a huge data set at quarterly frequency to investigate this issue. With an autoregressive distributed lag model we forecast total and sectoral GVA for one of the German states (Saxony) with more than 300 indicators from different regional levels (international, national and regional) and additionally make usage of different pooling strategies. Our results show that we are able to increase forecast accuracy of GVA for every sector and for all forecast horizons compared to an autoregressive process. Finally, we show that sectoral forecasts contain more information in the short term (one quarter), whereas direct forecasts of total GVA are preferable in the medium (two and three quarters) and long term (four quarters).

Suggested Citation

  • Lehmann, Robert & Wohlrabe, Klaus, 2013. "Sectoral gross value-added forecasts at the regional level: Is there any information gain?," MPRA Paper 46765, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:46765
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/46765/1/MPRA_paper_46765.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Katja Drechsel & Laurent Maurin, 2011. "Flow of conjunctural information and forecast of euro area economic activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 336-354, April.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    4. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    5. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    6. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic Factor Models," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 3, pages 25-40, Springer.
    7. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    8. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Robert Lehmann & Klaus Wohlrabe, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, Verein für Socialpolitik, vol. 16(2), pages 226-254, May.
    11. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
    12. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
    13. repec:hal:journl:peer-00844811 is not listed on IDEAS
    14. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    15. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    16. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    17. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
    18. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    19. Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
    20. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
    21. Elena Angelini & Marta Banbura & Gerhard Rünstler, 2010. "Estimating and forecasting the euro area monthly national accounts from a dynamic factor model," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-22.
    22. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    23. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    24. repec:bla:buecrs:v:64:y:2012:i::p:s53-s70 is not listed on IDEAS
    25. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    26. Bandholz, Harm & Funke, Michael, 2003. "Die Konstruktion und Schätzung eines Konjunkturfrühindikators für Hamburg," Wirtschaftsdienst – Zeitschrift für Wirtschaftspolitik (1949 - 2007), ZBW - Leibniz Information Centre for Economics, vol. 83(8), pages 540-548.
    27. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    28. Bethan West, 2010. "Regional gross value added," Economic & Labour Market Review, Palgrave Macmillan;Office for National Statistics, vol. 4(6), pages 35-46, June.
    29. Christian Dreger & Konstantin A. Kholodilin, 2007. "Prognosen der regionalen Konjunkturentwicklung," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 76(4), pages 47-55.
    30. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    31. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    32. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    33. Hahn, Elke & Skudelny, Frauke, 2008. "Early estimates of euro area real GDP growth: a bottom up approach from the production side," Working Paper Series 975, European Central Bank.
    34. Weber, Enzo & Zika, Gerd, 2013. "Labour market forecasting : is disaggregation useful?," IAB-Discussion Paper 201314, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    35. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    36. Robert Lehmann & Wolf-Dietmar Speich & Roman Straube & Gerit Vogt, 2010. "Funktioniert der ifo Konjunkturtest auch in wirtschaftlichen Krisenzeiten? : eine Analyse der Zusammenhänge zwischen ifo Geschäftsklima und amtlichen Konjunkturdaten für Sachsen," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(03), pages 8-14, 06.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65, May.
    2. V.V. Gamukin & O.S. Miroshnichenko, 2021. "Impact of the Gross Regional Product and Total Monetary Income of the Population on Savings Behavior in the Regions of Russia," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(3), pages 383-405.
    3. Robert Lehmann & Klaus Wohlrabe, 2017. "Boosting and regional economic forecasting: the case of Germany," Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
    4. Andreescu Francesca Dana, 2021. "On the linkage between Gross Value Added by Economic Activities and the Overall Gross Value Added in EU-27," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 1197-1207, December.
    5. Robert Lehmann & Felix Leiss & Simon Litsche & Stefan Sauer & Michael Weber & Annette Weichselberger & Klaus Wohlrabe, 2019. "Mit den ifo-Umfragen regionale Konjunktur verstehen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(09), pages 45-49, May.
    6. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    7. Valerij Gamukin, 2017. "Structural Change of Gross Regional Product in the Subjects of Ural Federal District," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(2), pages 410-421.
    8. Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
    9. Christian Seiler & Klaus Wohlrabe, 2013. "Das ifo Geschäftsklima und die deutsche Konjunktur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(18), pages 17-21, October.
    10. Robert Lehmann & Klaus Wohlrabe, 2014. "Regional economic forecasting: state-of-the-art methodology and future challenges," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
    11. Federico Lampis, 2016. "Forecasting the sectoral GVA of a small Spanish region," Economics and Business Letters, Oviedo University Press, vol. 5(2), pages 38-44.
    12. Robert Lehmann & Klaus Wohlrabe, 2013. "Sektorale Prognosen und deren Machbarkeit auf regionaler Ebene – Das Beispiel Sachsen," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 20(04), pages 22-29, August.
    13. V. Gamukin V. & В. Гамукин В., 2018. "Управление структурой валового регионального продукта в субъектах Южного федерального округа // Managing the Gross Regional Product Structure in the Territorial Subjects of the Southern Federal Distri," Управленческие науки // Management Science, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 8(2), pages 18-29.
    14. Robert Lehmann & Klaus Wohlrabe, 2017. "Boosting and regional economic forecasting: the case of Germany," Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
    15. Catalina MOTOFEI, 2017. "Sectorial evolutions in former communist economies, current EU members," The Audit Financiar journal, Chamber of Financial Auditors of Romania, vol. 15(146), pages 266-266.
    16. Henzel Steffen R. & Lehmann Robert & Wohlrabe Klaus, 2015. "Nowcasting Regional GDP: The Case of the Free State of Saxony," Review of Economics, De Gruyter, vol. 66(1), pages 71-98, April.
    17. Concha Artola & María Gil & Javier J. Pérez & Alberto Urtasun & Alejandro Fiorito & Diego Vila, 2018. "Monitoring the Spanish economy from a regional perspective: main elements of analysis," Occasional Papers 1809, Banco de España.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65, May.
    2. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    4. Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
    5. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    6. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    7. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    8. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    9. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    10. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    11. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
    12. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    13. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    14. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    15. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    16. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
    17. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    19. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    20. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.

    More about this item

    Keywords

    regional forecasting; gross value added; leading indicators; forecast combination; disaggregated forecasts;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.