IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Sectoral gross value-added forecasts at the regional level: Is there any information gain?

  • Lehmann, Robert
  • Wohlrabe, Klaus

In this paper, we ask whether it is possible to forecast gross-value added (GVA) and its sectoral sub-components at the regional level. We are probably the first who evaluate sectoral forecasts at the regional level using a huge data set at quarterly frequency to investigate this issue. With an autoregressive distributed lag model we forecast total and sectoral GVA for one of the German states (Saxony) with more than 300 indicators from different regional levels (international, national and regional) and additionally make usage of different pooling strategies. Our results show that we are able to increase forecast accuracy of GVA for every sector and for all forecast horizons compared to an autoregressive process. Finally, we show that sectoral forecasts contain more information in the short term (one quarter), whereas direct forecasts of total GVA are preferable in the medium (two and three quarters) and long term (four quarters).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/46765/1/MPRA_paper_46765.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 46765.

as
in new window

Length:
Date of creation: 06 May 2013
Date of revision:
Handle: RePEc:pra:mprapa:46765
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Robert Lehmann & Klaus Wohlrabe, 2012. "Forecasting GDP at the Regional Level with Many Predictors," CESifo Working Paper Series 3956, CESifo Group Munich.
  2. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German L�nder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
  3. repec:bla:buecrs:v:64:y:2012:i::p:s53-s70 is not listed on IDEAS
  4. Katja Drechsel & Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
  5. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  6. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
  7. Angelini, Elena & Bańbura, Marta & Rünstler, Gerhard, 2008. "Estimating and forecasting the euro area monthly national accounts from a dynamic factor model," Working Paper Series 0953, European Central Bank.
  8. Christian Dreger & Konstantin A. Kholodilin, 2006. "Prognosen der regionalen Konjunkturentwicklung," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 73(34), pages 469-474.
  9. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  10. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  11. Robert Lehmann & Wolf-Dietmar Speich & Roman Straube & Gerit Vogt, 2010. "Funktioniert der ifo Konjunkturtest auch in wirtschaftlichen Krisenzeiten? : eine Analyse der Zusammenhänge zwischen ifo Geschäftsklima und amtlichen Konjunkturdaten für Sachsen," ifo Dresden berichtet, Ifo Institute for Economic Research at the University of Munich, vol. 17(03), pages 8-14, 06.
  12. Bandholz, Harm & Funke, Michael, 2003. "Die Konstruktion und Schätzung eines Konjunkturfrühindikators für Hamburg," Wirtschaftsdienst – Zeitschrift für Wirtschaftspolitik (1998 - 2007), ZBW – German National Library of Economics / Leibniz Information Centre for Economics, vol. 83(8), pages 540-548.
  13. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-59, April.
  14. Drechsel, Katja & Maurin, Laurent, 2008. "Flow of conjunctural information and forecast of euro area economic activity," Working Paper Series 0925, European Central Bank.
  15. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer, vol. 90(1), pages 27-42, March.
  16. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-75, November.
  17. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  18. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
  19. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
  20. Hahn, Elke & Skudelny, Frauke, 2008. "Early estimates of euro area real GDP growth: a bottom up approach from the production side," Working Paper Series 0975, European Central Bank.
  21. Karim Barhoumi & Olivier Darné & Laurent Ferrara & Bertrand Pluyaud, 2012. "Monthly Gdp Forecasting Using Bridge Models: Application For The French Economy," Bulletin of Economic Research, Wiley Blackwell, vol. 64(Supplemen), pages s53-s70, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46765. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.