IDEAS home Printed from
   My bibliography  Save this article

Forecasting Regional Labor Market Developments under Spatial Autocorrelation


  • Simonetta Longhi

    (Institute for Social and Economic Research, University of Essex, Colchester, UK,

  • Peter Nijkamp

    (Department of Spatial Economics, Free University Amsterdam, the Netherlands,


Because of heterogeneity across regions, economic policy measures are increasingly targeted at the regional level and, therefore, require regional forecasts. The data available to compute regional forecasts are usually a pseudo panel of a limited number of observations over time and a large number of regions strongly interacting with each other. Traditional time-series techniques applied to distinct time series of regional data are probably a suboptimal forecasting strategy. Although both linear and nonlinear models have been applied and evaluated to forecast socioeconomic variables, spatial interactions among regions are often ignored. This article evaluates the ability of spatial error and spatial lag models to correct for misspecifications due to neglected spatial autocorrelation in the data. The empirical application on short-term forecasts of employment in 326 West German regions shows that the superimposed spatial structure that is required for the estimation of spatial models improves the forecasting performance of nonspatial models.

Suggested Citation

  • Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, , vol. 30(2), pages 100-119, April.
  • Handle: RePEc:sae:inrsre:v:30:y:2007:i:2:p:100-119

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Anonymous, 1998. "Water Resources Handbook For Economics," Natural Resource Economic Handbooks, United States Department of Agriculture, Natural Resources Conservation Service, number 32738.
    2. Decressin, Jorg & Fatas, Antonio, 1995. "Regional labor market dynamics in Europe," European Economic Review, Elsevier, vol. 39(9), pages 1627-1655, December.
    3. Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-283, July.
    4. Braumoeller, Bear F., 2004. "Hypothesis Testing and Multiplicative Interaction Terms," International Organization, Cambridge University Press, vol. 58(04), pages 807-820, October.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Olivier Jean Blanchard & Lawrence F. Katz, 1992. "Regional Evolutions," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(1), pages 1-76.
    7. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    8. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    9. Partridge, Mark D & Rickman, Dan S, 1998. "Generalizing the Bayesian Vector Autoregression Approach for Regional Interindustry Employment Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 62-72, January.
    10. Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
    11. Simonetta Longhi & Peter Nijkamp & Aura Reggianni & Erich Maierhofer, 2005. "Neural Network Modeling as a Tool for Forecasting Regional Employment Patterns," International Regional Science Review, , vol. 28(3), pages 330-346, July.
    12. Dan S. Rickman, 2002. "A Bayesian forecasting approach to constructing regional input-output based employment multipliers," Papers in Regional Science, Springer;Regional Science Association International, vol. 81(4), pages 483-498.
    13. Anselin, Luc & Tam Cho, Wendy K., 2002. "Spatial Effects and Ecological Inference," Political Analysis, Cambridge University Press, vol. 10(03), pages 276-297, June.
    14. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    15. Pami Dua & Stephen Miller, 1995. "Forecasting and Analyzing Economic Activity with Coincident and Leading Indexes: The Case of Connecticut," Working papers 1995-05, University of Connecticut, Department of Economics.
    16. Uwe Blien & Alexandros Tassinopoulos, 2001. "Forecasting Regional Employment with the ENTROP Method," Regional Studies, Taylor & Francis Journals, vol. 35(2), pages 113-124.
    17. Lutz Bellmann & Uwe Blien, 2001. "Wage Curve Analyses of Establishment Data from Western Germany," ILR Review, Cornell University, ILR School, vol. 54(4), pages 851-863, July.
    18. Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
    19. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lee, Lung-fei & Yu, Jihai, 2015. "Estimation of fixed effects panel regression models with separable and nonseparable space–time filters," Journal of Econometrics, Elsevier, vol. 184(1), pages 174-192.
    2. Li Dong & Le Canh, 2010. "Nonlinearity and Spatial Lag Dependence: Tests Based on Double-Length Regressions," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-18, June.
    3. Ana Angulo & Jesús Mur & Javier Trivez, 2014. "Measure of the resilience to Spanish economic crisis: the role of specialization," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 263-275.
    4. Yang, Yuan & Zhang, Junjie & Wang, Can, 2014. "Is China on Track to Comply with Its 2020 Copenhagen Carbon Intensity Commitment?," University of California at San Diego, Economics Working Paper Series qt1r5251g8, Department of Economics, UC San Diego.
    5. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
    6. repec:ura:ecregj:v:1:y:2017:i:2:p:410-421 is not listed on IDEAS
    7. Robert Lehmann & Klaus Wohlrabe, 2014. "Regional economic forecasting: state-of-the-art methodology and future challenges," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
    8. Eric Girardin & Konstantin A. Kholodilin, 2011. "How helpful are spatial effects in forecasting the growth of Chinese provinces?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 622-643, November.
    9. Semerikova, Elena & Demidova, Olga, 2016. "Using spatial econometric models for regional unemployment forecasting," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 43, pages 29-51.
    10. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2009. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0902, USI Università della Svizzera italiana.
    11. Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland K. & Kim, Hyun Jae & Park, Kihyun & Edward Yu, T., 2016. "Effects of electricity-price policy on electricity demand and manufacturing output," Energy, Elsevier, vol. 102(C), pages 324-334.
    12. Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland Keith & Kim, Taeyoung & Yu, T. Edward, 2015. "Effects of changes in electricity price on electricity demand and resulting effects on manufacturing output," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196850, Southern Agricultural Economics Association.
    13. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, Elsevier.
    14. Robert Lehmann & Klaus Wohlrabe, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, Verein für Socialpolitik, vol. 16(2), pages 226-254, May.
    15. Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland K. & Kim, Hyun Jae & Park, KiHyun & Edward Yu, Tun-Hsiang, 2016. "Short-run and the long-run effects of electricity price on electricity intensity across regions," Applied Energy, Elsevier, vol. 172(C), pages 372-382.
    16. Le, Canh Quang & Li, Dong, 2008. "Double-Length Regression tests for testing functional forms and spatial error dependence," Economics Letters, Elsevier, vol. 101(3), pages 253-257, December.
    17. Baltagi, Badi H. & Pirotte, Alain, 2014. "Prediction in a spatial nested error components panel data model," International Journal of Forecasting, Elsevier, vol. 30(3), pages 407-414.
    18. Schanne, Norbert, 2015. "A Global Vector Autoregression (GVAR) model for regional labour markets and its forecasting performance with leading indicators in Germany," IAB Discussion Paper 201513, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:30:y:2007:i:2:p:100-119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (SAGE Publications). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.