Forecasting Regional Labor Market Developments under Spatial Autocorrelation
Author
Abstract
Suggested Citation
DOI: 10.1177/0160017606298428
Download full text from publisher
References listed on IDEAS
- Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-283, July.
- Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
- Partridge, Mark D & Rickman, Dan S, 1998. "Generalizing the Bayesian Vector Autoregression Approach for Regional Interindustry Employment Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 62-72, January.
- Decressin, Jorg & Fatas, Antonio, 1995.
"Regional labor market dynamics in Europe,"
European Economic Review, Elsevier, vol. 39(9), pages 1627-1655, December.
- Decressin, Jörg & Fatás, Antonio, 1994. "Regional Labour Market Dynamics in Europe," CEPR Discussion Papers 1085, C.E.P.R. Discussion Papers.
- Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
- Diebold, Francis X & Kilian, Lutz, 2000.
"Unit-Root Tests Are Useful for Selecting Forecasting Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
- Francis X. Diebold & Lutz Kilian, 1999. "Unit Root Tests are Useful for Selecting Forecasting Models," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-063, New York University, Leonard N. Stern School of Business-.
- Francis X. Diebold & Lutz Kilian, 1999. "Unit Root Tests Are Useful for Selecting Forecasting Models," NBER Working Papers 6928, National Bureau of Economic Research, Inc.
- Unknown, 1998. "Water Resources Handbook For Economics," Natural Resource Economic Handbooks, United States Department of Agriculture, Natural Resources Conservation Service, number 32738, December.
- Braumoeller, Bear F., 2004. "Hypothesis Testing and Multiplicative Interaction Terms," International Organization, Cambridge University Press, vol. 58(4), pages 807-820, October.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Olivier Jean Blanchard & Lawrence F. Katz, 1992. "Regional Evolutions," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(1), pages 1-76.
- Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
- Simonetta Longhi & Peter Nijkamp & Aura Reggianni & Erich Maierhofer, 2005. "Neural Network Modeling as a Tool for Forecasting Regional Employment Patterns," International Regional Science Review, , vol. 28(3), pages 330-346, July.
- Anselin, Luc & Tam Cho, Wendy K., 2002. "Spatial Effects and Ecological Inference," Political Analysis, Cambridge University Press, vol. 10(3), pages 276-297, July.
- James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
- Lutz Bellmann & Uwe Blien, 2001. "Wage Curve Analyses of Establishment Data from Western Germany," ILR Review, Cornell University, ILR School, vol. 54(4), pages 851-863, July.
- Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Longhi, Simonetta & Nijkamp, Peter, 2006. "Forecasting regional labor market developments under spatial heterogeneity and spatial correlation," Serie Research Memoranda 0015, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Simonetta Longhi & Peter Nijkamp, 2005. "Forecasting Regional Labour Market Developments Under Spatial Heterogeneity and Spatial Autocorrelation," Tinbergen Institute Discussion Papers 05-041/3, Tinbergen Institute.
- Simonetta Longhi & Peter Nijkamp & Aura Reggianni & Erich Maierhofer, 2005. "Neural Network Modeling as a Tool for Forecasting Regional Employment Patterns," International Regional Science Review, , vol. 28(3), pages 330-346, July.
- Maria Francesca Cracolici & Miranda Cuffaro & Peter Nijkamp, 2007.
"Geographical Distribution of Unemployment: An Analysis of Provincial Differences in Italy,"
Growth and Change, Wiley Blackwell, vol. 38(4), pages 649-670, December.
- Maria Francesca Cracolici & Miranda Cuffaro & Peter Nijkamp, 2007. "Geographical Distribution of Unemployment: An Analysis of Provincial Differences in Italy," Tinbergen Institute Discussion Papers 07-065/3, Tinbergen Institute.
- Cracolici, M. Francesca & Cuffaro, Miranda & Nijkamp, Peter, 2007. "Geographical distribution of unemployment: an analysis of provincial differences in Italy," Serie Research Memoranda 0001, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Roberto Patuelli & Peter Nijkamp & Simonetta Longhi & Aura Reggiani, 2008.
"Neural Networks and Genetic Algorithms as Forecasting Tools: A Case Study on German Regions,"
Environment and Planning B, , vol. 35(4), pages 701-722, August.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2005. "Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms," Computational Economics 0511002, University Library of Munich, Germany.
- Schanne, N. & Wapler, R. & Weyh, A., 2010.
"Regional unemployment forecasts with spatial interdependencies,"
International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
- Hampel, Katharina & Kunz, Marcus & Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2007. "Regional employment forecasts with spatial interdependencies," IAB-Discussion Paper 200702, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2008. "Regional unemployment forecasts with spatial interdependencies," IAB-Discussion Paper 200828, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Roberto Patuelli & Peter Nijkamp & Simonetta Longhi & Aura Reggiani, 2008.
"Neural Networks and Genetic Algorithms as Forecasting Tools: A Case Study on German Regions,"
Environment and Planning B, , vol. 35(4), pages 701-722, August.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2008. "Neural networks and genetic algorithms as forecasting tools: a case study on German regions," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 35(4), pages 701-722, July.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2005. "Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms," Computational Economics 0511002, University Library of Munich, Germany.
- Lahiri, Kajal & Yang, Liu, 2013.
"Forecasting Binary Outcomes,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106,
Elsevier.
- Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
- Massimiliano Marcellino, "undated".
"Forecast pooling for short time series of macroeconomic variables,"
Working Papers
212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marcellino, Massimiliano, 2002. "Forecast Pooling for Short Time Series of Macroeconomic Variables," CEPR Discussion Papers 3313, C.E.P.R. Discussion Papers.
- Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019.
"Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence,"
Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
- Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2013. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working papers 2013-19, University of Connecticut, Department of Economics.
- Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2014. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working Papers 1403, University of Nevada, Las Vegas , Department of Economics.
- Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2017. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working Papers 201740, University of Pretoria, Department of Economics.
- Marcellino, Massimliano, 2004.
"Forecasting EMU macroeconomic variables,"
International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
- Massimiliano Marcellino, "undated". "Forecasting EMU macroeconomic variables," Working Papers 216, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marcellino, Massimiliano, 2002. "Forecasting EMU Macroeconomic Variables," CEPR Discussion Papers 3529, C.E.P.R. Discussion Papers.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, July.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, December.
- Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Uwe Blien, 2006. "New Neural Network Methods for Forecasting Regional Employment: an Analysis of German Labour Markets," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 7-30.
- Katharina Hampel & Marcus Kunz & Norbert Schanne & Ruediger Wapler & Antje Weyh, 2006. "Regional Unemployment Forecasting Using Structural Component Models With Spatial Autocorrelation," ERSA conference papers ersa06p196, European Regional Science Association.
- Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Breandán Ó'hUallacháin, 2008. "Regional growth transition clubs in the United States," Papers in Regional Science, Wiley Blackwell, vol. 87(1), pages 33-53, March.
- Alberto Baffigi & Roberto Golinelli & Giuseppe Parigi, 2002. "Real-time GDP forecasting in the euro area," Temi di discussione (Economic working papers) 456, Bank of Italy, Economic Research and International Relations Area.
- Massimiliano Marcellino, "undated".
"Instability and non-linearity in the EMU,"
Working Papers
211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marcellino, Massimiliano, 2002. "Instability and Non-Linearity in the EMU," CEPR Discussion Papers 3312, C.E.P.R. Discussion Papers.
- Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 383-406, November.
More about this item
Keywords
space-time data; regional forecasts; spatial autocorrelation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:30:y:2007:i:2:p:100-119. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.