IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Forecasting national activity using lots of international predictors: An application to New Zealand

  • Eickmeier, Sandra
  • Ng, Tim

We assess the marginal predictive content of a large international dataset for forecasting GDP in New Zealand, an archetypal small open economy. We apply “data-rich” factor and shrinkage methods to efficiently handle hundreds of predictor series from many countries. The methods covered are principal components, targeted predictors, weighted principal components, partial least squares, elastic net and ridge regression. We find that exploiting a large international dataset can improve forecasts relative to data-rich approaches based on a large national dataset only, and also relative to more traditional approaches based on small datasets. This is in spite of New Zealand’s business and consumer confidence and expectations data capturing a substantial proportion of the predictive information in the international data. The largest forecasting accuracy gains from including international predictors are at longer forecast horizons. The forecasting performance achievable with the data-rich methods differs widely, with shrinkage methods and partial least squares performing best in handling the international data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 27 (2011)
Issue (Month): 2 ()
Pages: 496-511

in new window

Handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:496-511
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sandra Eickmeier & Tim Ng, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/04, Reserve Bank of New Zealand.
  2. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  3. Mike Frith & Aaron Drew, 1998. "Forecasting at the Reserve Bank of New Zealand," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 61, December.
  4. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  5. Chamberlain, Gary & Rothschild, Michael, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Scholarly Articles 3230355, Harvard University Department of Economics.
  6. Alfred A Haug & Christie Smith, 2007. "Local linear impulse responses for a small open economy," Reserve Bank of New Zealand Discussion Paper Series DP2007/09, Reserve Bank of New Zealand.
  7. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  8. Stephane Dees & Arthur Saint-Guilhem, 2011. "The role of the United States in the global economy and its evolution over time," Empirical Economics, Springer, vol. 41(3), pages 573-591, December.
  9. Dées, Stéphane & Vansteenkiste, Isabel, 2007. "The transmission of US cyclical developments to the rest of the world," Working Paper Series 0798, European Central Bank.
  10. Buckle, Robert A. & Kim, Kunhong & Kirkham, Heather & McLellan, Nathan & Sharma, Jarad, 2007. "A structural VAR business cycle model for a volatile small open economy," Economic Modelling, Elsevier, vol. 24(6), pages 990-1017, November.
  11. Jan J.J. Groen & George Kapetanios, 2008. "Revisiting Useful Approaches to Data-Rich Macroeconomic Forecasting," Working Papers 624, Queen Mary University of London, School of Economics and Finance.
  12. Stephane Dees & Filippo di Mauro & M. Hashem Pesaran & L. Vanessa Smith, 2004. "Exploring the International Linkages of the Euro Area: A Global VAR Analysis," IEPR Working Papers 04.6, Institute of Economic Policy Research (IEPR).
  13. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  14. Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank, Research Centre.
  15. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer, vol. 90(1), pages 27-42, March.
  16. M. Hashem Pesaran & Til Schuermann & Scott M. Weiner, 2001. "Modelling regional interdependencies using a global error-correcting macroeconometric model," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B4-1, International Conferences on Panel Data.
  17. Chen, Yu-chin & Rogoff, Kenneth, 2003. "Commodity currencies," Journal of International Economics, Elsevier, vol. 60(1), pages 133-160, May.
  18. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  19. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  20. John C. Robertson, 2000. "Central bank forecasting: an international comparison," Economic Review, Federal Reserve Bank of Atlanta, issue Q2, pages 21-32.
  21. Troy D. Matheson, 2006. "Factor Model Forecasts for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 2(2), May.
  22. Marc Brisson & Bryan Campbell & John Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
  23. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2005. "Forecasting macroeconomic variables for the new member states of the European Union," Working Paper Series 0482, European Central Bank.
  24. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
  25. Eickmeier, Sandra & Lemke, Wolfgang & Marcellino, Massimiliano, 2011. "Classical time-varying FAVAR models - Estimation, forecasting and structural analysis," CEPR Discussion Papers 8321, C.E.P.R. Discussion Papers.
  26. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  27. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  28. Sandra Eickmeier, 2009. "Comovements and heterogeneity in the euro area analyzed in a non-stationary dynamic factor model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 933-959.
  29. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  30. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  31. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
  32. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768.
  33. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320.
  34. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  35. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
  36. Marc-André Gosselin & Greg Tkacz, 2001. "Evaluating Factor Models: An Application to Forecasting Inflation in Canada," Staff Working Papers 01-18, Bank of Canada.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:496-511. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.