IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Forecasting Hong Kong economy using factor augmented vector autoregression

  • Pang, Iris Ai Jao
Registered author(s):

    This work applies the FAVAR model to forecast GDP growth rate, unemployment rate and inflation rate of the Hong Kong economy. There is no factor model forecasting literature on the Hong Kong economy. The objective is to find out whether factor forecasting of using a large dataset can improve forecast performance of the Hong Kong economy. To avoid misspecification of the number of factors in the FAVAR, combination forecasts are constructed. It is found that forecasts from FAVAR model overall outperform simple VAR and AR models, especially when forecasting horizon increases. Generally, combination forecasts solve the misspecification problem.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: original version
    Download Restriction: no

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 32495.

    in new window

    Date of creation: 10 May 2010
    Date of revision:
    Handle: RePEc:pra:mprapa:32495
    Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
    Phone: +49-(0)89-2180-2219
    Fax: +49-(0)89-2180-3900
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Jesús Fernández-Villaverde & Juan Francisco Rubio-Ramírez & Thomas Sargent, 2005. "A, B, C’s, (and D’s) for understanding VARs," FRB Atlanta Working Paper No. 2005-09, Federal Reserve Bank of Atlanta.
    2. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
    3. William T. Gavin & Kevin L. Kliesen, 2008. "Forecasting inflation and output: comparing data-rich models with simple rules," Review, Federal Reserve Bank of St. Louis, issue May, pages 175-192.
    4. Ben Bernanke & Jean Boivin & Piotr S. Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, MIT Press, vol. 120(1), pages 387-422, January.
    5. Matheson, Troy D, 2006. "Factor Model Forecasts for New Zealand," MPRA Paper 807, University Library of Munich, Germany.
    6. Marc Brisson & Bryan Campbell & John Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
    7. Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    8. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    9. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," CEPR Discussion Papers 6706, C.E.P.R. Discussion Papers.
    10. Ben S. Bernanke & Ilian Mihov, 1998. "The Liquidity Effect and Long-Run Neutrality," NBER Working Papers 6608, National Bureau of Economic Research, Inc.
    11. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, vol. 99(1), pages 350-84, March.
    12. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
    13. Masahiko Shibamoto, 2007. "An Analysis Of Monetary Policy Shocks In Japan: A Factor Augmented Vector Autoregressive Approach," The Japanese Economic Review, Japanese Economic Association, vol. 58(4), pages 484-503.
    14. Daniel Grenouilleau, 2006. "The Stacked Leading Indicators Dynamic Factor Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping," European Economy - Economic Papers 249, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    15. Shibamoto, Masahiko, 2008. "The estimation of monetary policy reaction function in a data-rich environment: The case of Japan," Japan and the World Economy, Elsevier, vol. 20(4), pages 497-520, December.
    16. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Working Papers 07-8, Bank of Canada.
    17. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    18. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
    19. Matteo Ciccarelli & Carlo Altavilla, 2007. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro area," 2007 Meeting Papers 315, Society for Economic Dynamics.
    20. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
    21. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
    22. Gianluca Lagana & Andrew Mountford, 2005. "Measuring Monetary Policy In The Uk: A Factor-Augmented Vector Autoregression Model Approach," Manchester School, University of Manchester, vol. 73(s1), pages 77-98, 09.
    23. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    24. Mönch, Emanuel, 2005. "Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach," Working Paper Series 0544, European Central Bank.
    25. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, 07.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:32495. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.