IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

The Stacked Leading Indicators Dynamic Factor Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping

  • Daniel Grenouilleau
Registered author(s):

    The paper introduces an approximate dynamic factor model based on the extraction of principal components from a very large number of leading indicators stacked at various lags. The model is designed to produce short-term forecasts that are computed with the EM algorithm implemented with the first few eigenvectors ordered by descending eigenvalues. A cross-sectional bootstrap experiment is used to shed light on the sensitivity of the factor model to factor selection and to sampling uncertainty. The empirical number of factors seems more appropriately set through an analysis of eigenvalues, bootstrapped eigenvalues or the BIC than with more sophisticated information criteria. Confidence intervals derived from bootstrapped forecasts show the extent to which the data composition can support the hypothesis of business cycle co-movements and the selected factors can account for those shocks. Pseudo real-time out-of-sample forecast experiments conducted with a dataset of about two thousand series covering the euro area business cycle show that the SLID factor model outperforms benchmark models (AR models, leading indicators equations) for one-, two- and three- quarters-ahead forecasts of GDP growth. The accuracy of coincident forecasts compared to final estimates is not significantly different from Eurostat Flash or first estimates and is slightly superior to that of CEPR Eurocoin.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Directorate General Economic and Financial Affairs (DG ECFIN), European Commission in its series European Economy - Economic Papers with number 249.

    in new window

    Length: 65 pages
    Date of creation: Jun 2006
    Date of revision:
    Handle: RePEc:euf:ecopap:0249
    Contact details of provider: Postal: Coomunivcations Unit, B-1049 Bruxelles / Brussels
    Fax: +32 2 298.08.23
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    2. Garrat, A. & Lee, K. & Pesaran, M.H. & Shin, Y., 2000. "Forecast Uncertainties in Macroeconometric Modelling: An Application to the UK Economy," Cambridge Working Papers in Economics 0004, Faculty of Economics, University of Cambridge.
    3. Stock, J.H. & Watson, M.W., 1989. "New Indexes Of Coincident And Leading Economic Indicators," Papers 178d, Harvard - J.F. Kennedy School of Government.
    4. Connor, Gregory & Korajczyk, Robert A, 1993. " A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-91, September.
    5. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    6. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages C62-85, May.
    7. Tatiana Kirsanova, 2002. "Credibility of the Russian Stabilisation Programme in 1995-98," NIESR Discussion Papers 193, National Institute of Economic and Social Research.
    8. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2003. "Leading Indicators for Euro Area Inflation and GDP Growth," CEPR Discussion Papers 3893, C.E.P.R. Discussion Papers.
    9. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    10. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
    11. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
    12. Angelini, Elena & Henry, Jérôme & Mestre, Ricardo, 2001. "A multi-country trend indicator for euro area inflation: computation and properties," Working Paper Series 0060, European Central Bank.
    13. Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
    14. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    15. Angelini, Elena & Henry, Jérôme & Mestre, Ricardo, 2001. "Diffusion index-based inflation forecasts for the euro area," Working Paper Series 0061, European Central Bank.
    16. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
    17. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    18. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    19. Perron, P, 1988. "The Great Crash, The Oil Price Shock And The Unit Root Hypothesis," Papers 338, Princeton, Department of Economics - Econometric Research Program.
    20. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    21. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
    22. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:euf:ecopap:0249. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ECFIN INFO)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.