IDEAS home Printed from https://ideas.repec.org/p/oec/ecoaaa/364-en.html
   My bibliography  Save this paper

Indicator Models of Real GDP Growth in Selected OECD Countries

Author

Listed:
  • Franck Sédillot
  • Nigel Pain

Abstract

Accurate and timely information on the current state of economic activity is an important requirement for the policymaking process. Delays in the publication of official statistics mean that a complete picture of economic developments within a particular period emerges only some time after that period has elapsed. The research described in this paper develops a set of econometric models that provide estimates of GDP growth for a number of major OECD countries and zones in the two quarters following the last quarter for which official data have been published. These models exploit the considerable amount of monthly conjunctural information that becomes available before the release of official national accounts data. Information is incorporated from both ‘soft’ indicators, such as business surveys, and ‘hard’ indicators, such as industrial production and retail sales, and use is made of different frequencies of data and a variety of estimation techniques. An automated procedure is ... Modèles de prévision de la croissance du PIB réel dans certains pays de l'OCDE, à l'aide d'indicateurs conjoncturels Disposer d’information précise et à jour sur la situation courante de l’économie est une exigence fondamentale dans le processus de décision économique. Les délais dans la publication des statistiques officielles signifient qu’un tableau complet des évolutions économiques au cours d’une période particulière n’est seulement disponible que quelques temps après la fin de cette période. Les travaux décrits dans cet article présentent un ensemble de modèles économétriques permettant d’estimer la croissance du PIB dans certaines grandes économies ou zones de l’OCDE à un horizon de deux trimestres après le dernier trimestre publié. Ces modèles utilisent une masse importante d’information conjoncturelle mensuelle disponible avant la publication des données officielles de comptes nationaux. Cette information provient à la fois d’indicateurs ‘mous’ comme les enquêtes d’opinion ou d’indicateur ‘durs’ comme la production industrielle ou les ventes de détail. Différentes fréquences et méthodes ...

Suggested Citation

  • Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
  • Handle: RePEc:oec:ecoaaa:364-en
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1787/275257320252
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    2. Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
    3. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    4. Works, Richard Floyd, 2016. "Econometric modeling of exchange rate determinants by market classification: An empirical analysis of Japan and South Korea using the sticky-price monetary theory," MPRA Paper 76382, University Library of Munich, Germany.
    5. Esteves, Paulo Soares, 2013. "Direct vs bottom–up approach when forecasting GDP: Reconciling literature results with institutional practice," Economic Modelling, Elsevier, vol. 33(C), pages 416-420.
    6. Daniel Grenouilleau, 2004. "A sorted leading indicators dynamic (SLID) factor model for short-run euro-area GDP forecasting," European Economy - Economic Papers 2008 - 2015 219, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    7. Oliver Hülsewig & Johannes Mayr & Stéphane Sorbe, 2007. "Assessing the Forecast Properties of the CESifo World Economic Climate Indicator: Evidence for the Euro Area," ifo Working Paper Series 46, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. Gilles Mourre & Michael Thiel, 2006. "Monitoring short-term labour cost developments in the European Union: which indicators to trust?," European Economy - Economic Papers 2008 - 2015 258, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    9. Stéphanie Guichard & Elena Rusticelli, 2011. "A Dynamic Factor Model for World Trade Growth," OECD Economics Department Working Papers 874, OECD Publishing.
    10. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    11. Qin, Duo & Cagas, Marie Anne & Ducanes, Geoffrey & Magtibay-Ramos, Nedelyn & Quising, Pilipinas, 2008. "Automatic leading indicators versus macroeconometric structural models: A comparison of inflation and GDP growth forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 399-413.
    12. Daniel Grenouilleau, 2006. "The Stacked Leading Indicators Dynamic Factor Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping," European Economy - Economic Papers 2008 - 2015 249, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    13. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    14. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
    15. Works, Richard & Haan, Perry, 2017. "An Empirical Study of Japanese and South Korean Exchange Rates Using the Sticky-Price Monetary Theory," MPRA Paper 77235, University Library of Munich, Germany.
    16. Gerit Vogt, 2004. "Prognose von Umsatz und Bruttowertschöpfung des verarbeitenden Gewerbes in Sachsen für das Jahr 2004 (Prognose der Bruttowertschöpfung des sächsischen verarbeitenden Gewerbes 2004)," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(04), pages 23-30, August.
    17. Barhoumi, K. & Brunhes-Lesage, V. & Ferrara, L. & Pluyaud, B. & Rouvreau, B. & Darné, O., 2008. "OPTIM: a quarterly forecasting tool for French GDP," Quarterly selection of articles - Bulletin de la Banque de France, Banque de France, issue 13, pages 31-47, Autumn.

    More about this item

    Keywords

    bridge equations; données mensuelles; indicator models; modèle d'indicateurs conjoncturels; monthly data; prévisions économiques à court terme; short-term economic forecasts; équation de passage;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:ecoaaa:364-en. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/edoecfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.